Intermodal quantum key distribution (IM-QKD) enables the integration of fiber networks and free-space channels, which are both necessary elements for the development of a global quantum network. IM-QKD permits to extend the reach of free-space links without trusting any additional node, but this requires to efficiently couple the freespace signal into a single-mode fiber (SMF). We present a preliminary point-to-point test conducted in a 620 m free-space channel, with the aim to be used in an intermodal QKD architecture switching between a fiber and a free-space link.
Intermodal quantum key distribution (IM-QKD) enables the integration of fiber networks and free-space connections, which can be ground-to-ground links or involve satellite nodes in orbit. IM-QKD permits to extend the reach of free-space links without trusting any additional node, but this requires to efficiently couple the free-space signal into a single-mode fiber (SMF). We present the implementation of different IM-QKD networks realized in Padova and Vienna, exploiting km-long deployed fibers and free-space channels up to 620 meters. We show that such an intermodal scheme is compatible with both in-house QKD systems and commercially available solutions exploiting polarization encoding at 1550 nm. Remarkably, we realized different QKD tests in daylight and also in rainy conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.