The Matter in Extreme Conditions Upgrade (MEC-U) project is a major upgrade to the MEC instrument on the Linac Coherent Light Source (LCLS) X-ray free electron laser (XFEL) user facility at SLAC National Accelerator Laboratory. The MEC instrument combines the XFEL with a high-power, short-pulse laser and high energy shock driver laser to produce and study high energy density plasmas and materials found in extreme environments such as the interior of stars and fusion reactors, providing the fundamental understanding needed for applications ranging from astronomy to fusion energy. When completed, this project will significantly increase the power and repetition rate of the MEC high intensity laser system to the petawatt level at up to 10 Hz, increase the energy of the shock-driver laser to the kilojoule level, and expand the capabilities of the MEC instrument to support groundbreaking experiments enabled by the combination of high-power lasers with the world’s brightest X-ray source. Lawrence Livermore National Laboratory (LLNL) is developing a directly diode-pumped, 10 Hz repetition rate, 150 J, 150 fs, 1 PW laser system to be installed in the upgraded MEC facility. This laser system is an implementation of LLNL’s Scalable High power Advanced Radiographic Capability (SHARC) concept and is based on chirped pulse amplification in the diode-pumped, gas-cooled slab architecture developed for the Mercury and HAPLS laser systems. The conceptual design and capabilities of this laser system will be presented.
C. Haefner, A. Bayramian, S. Betts, R. Bopp, S. Buck, J. Cupal, M. Drouin, A. Erlandson, J. Horáček, J. Horner, J. Jarboe, K. Kasl, D. Kim, E. Koh, L. Koubíková, W. Maranville, C. Marshall, D. Mason, J. Menapace, P. Miller, P. Mazurek, A. Naylon, J. Novák, D. Peceli, P. Rosso, K. Schaffers, E. Sistrunk, D. Smith, T. Spinka, J. Stanley, R. Steele, C. Stolz, T. Suratwala, S. Telford, J. Thoma, D. VanBlarcom, J. Weiss, P. Wegner
Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.
Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.