Transcranical photobiomodulation (tPBM, 1267 nm, 32 J/cm2) is effective non-invasive method for clearance of beta-amyloid from the brain in mice with Alzheimer’s disease and for improvemen of their neurological status.
In this work, we consider the use of optical clearing agents to improve imaging quality of the cerebral blood flow of newborn mice. Aqueous 60%-glycerol solution, aqueous 70%-OmnipaqueTM(300) solution and OmnipaqueTM (300) solution in water/DMSO(25%/5%) were selected as the optical clearing agents. Laser speckle contrast imaging (LSCI) was used for imaging of cerebral blood flow in newborn mice brain during topical optical clearing of tissuesin the area of the fontanelle. These results demonstrate the effectiveness of glycerol and Omnipaque solutions as optical clearing agents for investigation of cerebral blood flow in newborn mice without scalp removing and skull thinning.
Neonatal hemorrhagic stroke (NHS) is a major problem of future generation’s health due to the high rate of death and cognitive disability of newborns after NHS. The incidence of NHS in neonates cannot be predicted by standard diagnostic methods. Therefore, the identification of prognostic markers of NHS is crucial. There is evidence that stress-related alterations of cerebral blood flow (CBF) may contribute to NHS. Here, we assessed the stroke-associated CBF abnormalities for high prognosis of NHS using a new model of NHS induced by sound stress in the pre- and post-stroke state. With this aim, we used interdisciplinary methods such as a histological assay of brain tissues, laser speckle contrast imaging and Doppler coherent tomography to monitor cerebral circulation. Our results suggest that the venous stasis with such symptoms as progressive relaxation of cerebral veins, decrease the velocity of blood flow in them are prognostic markers for a risk of NHS and are an informative platform for a future study of corrections of cerebral venous circulatory disturbance related to NHS.
In this paper, we discuss a relationship between stress-induced formation of hypertension and ulcer bleeding and the level of serum testosterone in female and male rats. We show that the secretion of testosterone is an important sign of severity of stress-induced damages of vascular homeostasis in males but not in females.
The incidence of perinatal hemorrhagic stroke (HS) is very similar to that in the elderly and produces a significant morbidity and long-term neurologic and cognitive deficits. There is strong evidence that cerebral blood flow (CBF) abnormalities make considerable contribution to HS development. However, the mechanisms responsible for pathological changes in CBF in infants with HS are not established. Therefore, quantitative assessment of CBF may significantly advance the understanding of the nature of neonatal stroke. The aim of this investigation was to determine the particularities of alterations in macro- microcirculation in the brain of newborn rats in the different stages of stress-related development of HS using three-dimensional Doppler optical coherence tomography (DOCT) and laser speckle contrast imaging (LSCI).Our results show that cerebral veins are more sensitive to harmful effect of stress compared with microcirculatory vessels. Stress-induced progressive dilation of cerebral veins with the fall of blood flow velocity precedes HS while pathological changes in microcirculatory vessels are accompanied by development of HS. The further detailed study of cerebral venous and microcirculatory circulation would be a significant advance in development of prognostic criteria for a HS risk during the first days after birthday.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.