The aim of this work is to develop practical tools to recognize the average flow rate of physiological fluids in capillaries. This tool is represented by classification models in an artificial neural networks form. The flow rate data were obtained experimentally. Intralipid was used as the test liquid. Laser speckle contrast imaging was used to obtain images of liquid flow in a glass capillary. The experiment was carried out with an average flow rate of 0-2 mm/s with various concentrations of intralipid. The results of training of fully connected and convolutional neural networks for processing the received data are presented. The accuracy of determining the average flow rate of intralipid with different concentrations was comparable to the previously obtained results for a fixed concentration and amounted to approximately 97.5%.
The paper deals with processing data obtained using nailfold high-speed videocapillaroscopy. To detect the red blood cells velocity two approaches are used. The deterministic approach is based on pixel intensities analysis for object detection and calculation of the displacement and velocity of red blood cells in a capillary. The obtained data formulate targets for the second approach. The stochastic approach is based on a sequence of artificial neural networks. The semantic segmentation network UNet is used for capillary detection. Then, the classification network GoogLeNet or ResNet is used as a feature extractor to convert masked video frames to a sequence of feature vectors. And finally, the long short-term memory network is used to approximate the red blood cells velocity. The results demonstrated that the accuracy of the mean velocity approximation in the time range of several seconds is up to 0.96. But the accuracy at each specific time moment is less accurate. So, the proposed algorithm allows the determination of the RBCs mean velocity but it doesn't allow determination of the RBCs pulsations accurate enough.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.