Efficient manipulation of the valley degree of freedom in Transition Metal Dichalcogenide (TMD) monolayers at the nanoscale becomes very desirable for future developments in valleytronics. Resonant optical nanostructures are considered as potential tools in this endeavor; however, it is still unclear how they affect polarization properties of valley-specific monolayer emission. Here, we present a systematic experimental and numerical study that is aimed to bridge this gap. As a simple model, we consider a hybrid system where valley-polarized photoluminescence [1] or second harmonic from MoS2 - monolayer is coupled with a plasmonic nanosphere. Through this study, we are not only aimed to refine the exciting simulation approaches for valleytronic devices, but also contribute to the deeper understanding of the rich physics of light-matter interactions at the nanoscale.
Two-dimensional semiconductors such as monolayer transition metal dichalcogenides (TMDs) exhibits remarkable optical properties such as robust valley polarization, making them ideal for optoelectronic and valleytronic devices. Manipulating the valley polarization by optical method is the key to realize valleytronic devices. Here, we demonstrate a resonant plasmonic nanostructure designed to spatially separate the emissions from different valleys of the WSe2 monolayer at cryogenic temperature. By changing the helicity of excitation, we show the directionality control of valley-based emission. Our hybrid nanostructure exhibits the possibility to realise the valleytronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.