There is a broad application of laser communication. This technology makes a great contribution to information exchanging between a station on ground and a satellite in space or between two satellites in space. Transceiver of space laser communication usually shares one optical path for compact, lightweight, low cost design. The most important thing is that the laser communication should have low wave aberration, low polarization loss and high isolation. Transmitting and receiving signals use one optical path, which makes negative influence on the isolation in system. It is a big challenge for engineers or designers to ensure the high isolation. The paper made a design about the key device in the transceiver, which was sensitive to isolation. The basic idea of this design was using the special structure style and optical material. It could eliminate stray light efficiently. It was proved that the process of manufacturing and assembling was not difficult. The device proposed in this paper could improve the efficiency and quality of laser communication. Moreover, the paper made mechanical simulation of device to prove that the device was safe.
The laser communication system with polarized beam splitting is a useful method for interstellar networking. In longdistance communication terminals which adopts a system of common aperture same frequency transmitting-receiving, the stray light comes from the inside system is generated by retroreflectance and scattering, which will cause interference to the reception of signal light. The ability of internal stray light suppression is the main factor restricting the output power of the system signal and the distance of communication chain-establishment. The optical antenna as the key component of the common channel, coaxial optical antennas are replaced by off-axis optical antennas to reduce paraxial stray light. This work designed miniaturized off-axis optical antenna with a large field of view, and combined the YNI factor to analyze the factors affecting the internal stray light. The proportion of stray light generated on each surface was determined through surface modeling and simulation in Tracepro, and the optical antenna was actually tested by constructing optical path. The test result 71dB is close to the simulation result73dB. It indicates that the off-axis angle and YNI factor can be used to characterize the isolation indicator of optical antenna. We believe this work is of great significance for guiding the rapid design and indicator analysis of the system, meanwhile provides reference for other systems of stray light suppression.
KEYWORDS: Super resolution, Imaging systems, Point spread functions, Wavefronts, Near field optics, Diffraction, Near field scanning optical microscopy, Modulation, Optical microscopy, Phase shift keying
Superoscillation is a promising method to realize superresolution imaging. Nevertheless, in the point spread function (PSF) of previous superoscillation imaging systems, compared to the several orders of magnitude higher intensity in side-lobes, the extremely small intensity in the focal-spot is a severe constraint for practical applications. In this paper, we creatively segment the conventional superoscillation lens into two simple-fabrication portions to generate the superoscillation optical field and realize superresolution imaging in a local field of view (LFOV). We then analyze the contribution of different portions of the entrance pupil to the system’s resolution and propose a novel superoscillation element (NSOE) design to effectively reduce the intensity of side-lobes. We end by reporting our recent results on the imaging of complex targets, and the validity and potential applications of superresolution imaging is well demonstrated.
Infrared detection system, due to its high stability and all-weather adaptability, has been widely applied in civil and military areas. In this paper, based on the refractive/diffractive hybrid structure and the passive athermalization, a dualband infrared optical system with large relative aperture (F=1) is designed, which has excellent performance in the correction of thermal aberration, chromatic aberration and second spectrum between -40°C to 60°C. By precisely arranging the double-layer diffraction element, the system designed is simplified effectively, which contains only four lenses. Meanwhile, the optical layout has the advantages of lower weight and smaller volume. The MTF in mid-wave infrared is larger than 0.6, which demonstrates good capacity of target recognition and anti-inference, and thus it is suitable for practical usage in the field of aviation remote sensing.
When an object is illuminated by an incoming light described by a Stokes vector, the outgoing light scattered, reflected or transmitted from the object is modulated and its polarization property can be expressed by another Stokes vector. The transformation relation between the incoming and the outgoing Stokes vectors is called the Mueller matrix. The Mueller matrix completely characterizes the optical properties of the light scattered or transmitted from the object, including the diattenuation, the retardance and the depolarization. So, how to measure the Mueller matrix efficiently and accurately becomes considerably significant for its practical applications. We propose a new method for Mueller matrix fast acquisition based on a division-of-aperture simultaneous polarimetric imaging technique. Traditional methods for obtaining the 16 elements of the Mueller matrix require at least 16 polarimetric measurements. While in our method it is enough by just changing the states of polarization (SOPs) of the input light 4 times. These time-saving and easy calculating features are contributed to our specific polarimetric camera, where a full-Stokes vector is obtained easily since 3 linear SOPs (0°, 45°, 90°) and 1 circular SOP can be recorded simultaneously by sharing the same detector. To simply verify the effectiveness of our method, polarizers (45°, 90°), and quarter-wave plates (0°, 45°) are chosen as samples to be measured. Experimental results show that they are consistent with the theoretical results, both in the Mueller matrix and the corresponding images. We predict that this method for Mueller matrix rapid acquisition can get wide potential applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.