The attenuation of hollow-core fibers (HCFs) is predicted to surpass the minimum intrinsic attenuation of standard single-mode fibers (SMFs) in the near future. Recent advances in HCF performance and drawing technology have motivated their application not only in telecommunications but also in sensing and high-power delivery. Among HCFs, nested antiresonant nodeless fibers (NANFs) have shown the lowest attenuation values with 0.28 dB/km at 1550 nm and 0.22 dB/km at 1625 nm. Furthermore, the latest generation of NANFs effectively mitigates higher-order modes, which in some applications introduces a significantly limiting factor. As HCFs are becoming more available, their incorporation into standard SMF-based systems needs to be efficiently addressed.
Various solutions to the HCF-SMF interconnection have already been proposed, such as the commonly employed fusion splicing with bridge fibers, using tapers to match the mode-fields, employing micro-optics, or using the fiber-array approach. Based on the fiber-array approach we have recently demonstrated losses of only 0.16 dB per interconnection and back reflection below -60 dB.
But what if the interconnection itself can provide some additional functionality beyond low loss and low back reflection?
Such an approach was already proposed in the micro-optics interconnection providing a function as an optical isolator or a wavelength-division multiplexer. Still, the relatively high complexity of such a device might limit its wider application.
In this talk, I will overview current trends in HCF-SMF interconnection techniques which are enabling their incorporation into current SMF-based fiber-optic systems. I will present a future outlook of providing additional functionality to the HCF-SMF interconnection. I will focus on an interconnection technique we developed, based on the fiber-array approach. I will show how components such as an optical filter, a gas cell, or a Fabry-Perot cavity can be easily formed by simple tailoring of the HCF-SMF interconnection.
Silica glass optical fibers have revolutionized data transmission, sensing and laser development over the past 50 years. Moreover, dielectric waveguides with a hollow core offer exciting development possibilities beyond traditional technology. Hollow Core Optical Fibers (HCFs) have been fabricated over the past 20 years with various geometries and refinements, yet their attenuation has remained significantly higher than can be routinely achieved in standard silica single mode fibers. Here we present recent developments in Nested Anti-resonant Nodeless Fiber (NANF) design over the last few years and show how this rapidly developing technology has been refined to produce state of the art HCFs at wavelengths between 850 – 1625 nm.
In this paper, we present results of long-term stability tests of a low-loss (<0.55 dB) hollow core fiber (HCF) to standard optical fiber interconnection prepared by modified gluing-based fiber-array technology. We measured insertion loss of three interconnected HCF samples over a period of 100 days at room temperature, observing a variation in insertion loss of less than 0.02 dB. Subsequently, we placed the HCF samples in a climatic chamber and heated to +85°C in four cycles. Maximum insertion loss variation of 0.10 dB was observed for HCF samples with angled 8° interconnections and only 0.02 dB for a HCF sample with a flat interconnection.
Hollow core optical fibres have many unique properties, especially compared to traditional glass-core optical fibres [1]. Firstly, the light path is accessible and light can thus interact with the gas inside over long lengths, making them interesting for applications in gas sensing or for nonlinear processes in gasses. Hollow core fibres can also operate at wavelengths, where silica glass has poor transmission and their chromatic dispersion is not compromised by the chromatic dispersion of bulk glass. Yet another unique feature is weak interaction of light with the guiding medium (typically air), significantly increasing the damage threshold and thus making them a good candidate for high-power (average or peak power) light delivery. Another group of unique features is related to how their properties (little) change with temperature.
In the presentation, we will firstly show where the common fibre optics wisdom (gained from work with standard optical fibres) tends to fail. In the second part, we will discuss how differently hollow core fibre change with temperature as compared to standard optical fibres and how it can be used for various applications, including fibre interferometry and time-stable signal transmission.
Silica glass optical fibers have revolutionized data transmission, sensing and laser development over the past 50 years, however, dielectric waveguides with a hollow core offer exciting development possibilities beyond traditional technology. Hollow Core Optical Fibers (HCFs) have been fabricated over the past 20 years with various geometries and refinements reported over this time. Despite numerous design developments and predictions from theoretical studies, one of the key performance indicators of optical fibers – attenuation - has remained significantly higher than can be routinely achieved in standard silica single mode fibers. Here we present recent developments in Nested Anti-resonant Nodeless Fiber (NANF) design over the last few years and show how this rapidly developing technology has been refined to produce state of the art HCFs with attenuation = 0.28 dB/km at 1550 nm.
Propagation time through standard optical fibres changes with temperature at a rate of 40 ps/km/K. This can pose significant challenges in many diverse application areas of optical fibres in physics and engineering. Primary examples lie in applications in which very precise timing signals need to be disseminated for synchronization purposes in large experimental infrastructures such as synchrotrons, linear particle accelerators, large telescope arrays, and in phase arrayed antennae. A value of 40 ps/km/K equates to a phase temperature sensitivity of about 48 rad/m/K. This can adversely affect many applications relying on fibre interferometers (e.g. fibre optic sensors, quantum-optics, interferometric measurement techniques, and so on), in which maintaining stable interference would require temperature stabilization below mK level. Similarly, a few key optical metrology applications require the dissemination of optical signals at a precise frequency, for example to compare distant ultra-precise clocks (e.g., national standard clocks) with a precision (fractional stability) at/below the 10-18 level. Such a level of precision is easily compromised by thermally-induced changes in optical path length (temperature drift) with time that unavoidably result in a Doppler frequency shift.
Here, we review our recent results in which we show why and how Hollow-Core Fibres (HCF) are significantly better than solid-core fibres in terms of their sensitivity of propagation time and accumulated phase change to temperature and thus are a better alternative to standard fibres in the above-mentioned fields.
Flexible dielectric optical fibers guiding light in a hollow core were conceptually imagined at the end of the 19th century, but first demonstrated in practice about 2 decades ago. Since then, many geometric variants have been described and implemented, and theoretical models developed and finessed. Despite this, for a fairly long time the key metric by which their performance was judged – attenuation – has remained quite considerably higher than standard all-glass fibers. In this paper, we describe the recent breakthroughs in hollow core fiber technology. We trace the story of this breakthrough from the theoretical exploration of a new design of hollow core fiber, through early implementations, up to the staggering results achieved over the last 18 months. The progress reported concerns not only a reduction in the fiber attenuation level, but also a considerable improvement in modal quality of the fibers, which have led to excellent data transmission performance. These fabricated fibers tell a story of improvements in all aspects of the technology, including preform preparation, performance modelling, fiber draw dynamics and coatings.
We study in detail the macrobending effects in a wide transmission bandwidth (~200nm) 19 cell hollow-core photonic bandgap fiber operating at 1550nm. Our results indicate low bend sensitivity over a ~130nm wide interval within the transmission window, with negligible loss (<0.1dB) for bending radii down to 5mm. The “red shift” and “blue shift” of the bandgap edge have been observed at the short and long wavelength edges, respectively. The cutoff wavelengths where air-guiding modes stop guiding can be extracted from the bending loss spectra, which matches well with the simulated effective refractive index map of such fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.