KEYWORDS: Sensors, Optoelectronics, Device simulation, RGB color model, CMOS sensors, Imaging systems, Diffusion, Systems modeling, Data modeling, Color imaging
Color imaging systems still use a combination of conventional photo-detectors and RGB optical filters for color measurement. This entails many limitations to the color sensor performances. We reported that buried junction color detectors give good alternatives to overcome these limitations. However, successful design of color sensors using these detectors requires an accurate knowledge of their behaviors. Unfortunately, circuit simulators do not provide models for these devices. In order to make the designer task more flexible, an optoelectronic library is developed under CADENCE design tool. It consists of some optoelectronic elements such as Buried Double pn Junction (BDJ) detector and a set of optical sources. This allows the designer to choose an optical stimulus with a specific spectral distribution and also to select the total power incident on the BDJ surface.
The library is obtained by implementing, in Spectre simulator, the behavioral models of the optoelectronic elements. The models are written using Verilog-A language. Simulations of the BDJ spectral response and dark currents give a good agreement with experimental data. We also note the absence of convergence errors or mathematical faults during DC and transient simulations of active pixel sensor architectures. These results confirm the robustness of the optoelectronic library.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.