We report on multi-100W ultrafast laser sources based on industrialized components which deliver pulse energies starting from sub-mJ to well exceeding 200mJ. These sources are based on ytterbium-doped laser media which intrinsically have very high efficiencies and therefore allow for stable operation at high average powers but are limited due to the supported bandwidth to some 100fs pulse durations. The presented setups compress this type of pulses to well below 50fs with a single SPM-based stage which adds approximately an order of magnitude in pulsed peak power. Adding a second stage allows for even shorter pulses in the few-cycle regime where even the carrier-envelope phase of the pulses is of relevance and consequently has to be characterized and stabilized.
We introduce the concept of broadband near-infrared molecular fieldoscopy. In this scheme, molecules are excited by femtosecond pulses in near-infrared spectral range and the complex electric field of their free induction decay is directly measured by means of electro-optic sampling. Few-cycle pulses centered at 2 µm and 1 µm are generated from a 5 kHz, Yb:YAG regenerative amplifier and employed for femtosecond excitation and electro-optic sampling, respectively. We chose water in an acetic acid solvent to demonstrate the first proof of principle measurement with the novel technique. The complex electric field of the combination bond of water molecules at 1930 nm at different molecular concentrations is detected and presented. We show the detection sensitivity of our time- domain technique is comparable to conventional specral-domain techniques. However, by employing a laser frontend with higher repetition rates, the detection sensitivity can be drastically enhanced. To the best of our knowledge, this is the first detection of the complex electric field of the molecular response in near-infrared spectral range. The new method holds promise for high-resolution overtone spectroscopy and microscopy with unparalleled sensitivity and specificity over the entire molecular fingerprint region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.