ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as
ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict
changes to the Earth’s hydrological cycle and energy balance in response to climate forcings by generating observational
constraints on future science questions, especially those associated with the effects of aerosol on clouds and
precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue
through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to
characterizing the properties of clouds and precipitation and the physical processes that force these properties. These
include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and
submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial
and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We
have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory
algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data
stream influences the error in a specific cloud quantity retrieval.
Gerald Mace, Ryan Riveland, Sally Benson, Steven Platnick, Linnea Avallone, Elliot Weinstock, David Sayres, Cynthia Twohy, Tim Garrett, Greg Kok, Andrew Heymsfield
With a global frequency of occurrence near 30%, cirrus clouds wield a strong influence over the radiation budget of the Earth’s climate system due to their location in the upper troposphere. Currently, global climate models (GCMs) are unable to accurately represent cirrus cloud feedbacks on the radiation and hydrological cycles due to a lack of understanding of how to parameterize the effects of cirrus. This inability to parameterize the microphysical properties of cirrus clouds can be attributed to a general lack of observations of these clouds and their dynamical environment in the upper troposphere. While aircraft provide direct measurements in this region, their use is limited due to expense, and ground-based remote sensors such as radars and lidars, while also quite useful, are limited to just a few locales. Satellite measurements, on the other hand, are global in nature but limited in the sense that the cloud properties must be derived through the use of complicated inversion algorithms. One of the newer satellite instruments currently on board the NASA Earth Observing System Terra and Aqua platforms, is the moderate resolution Imaging Spectroradiometer. MODIS observes upwelling reflectance and radiance from the Earth's atmosphere and surface in 36 narrow spectral intervals ranging from .62 μm to 14.385 μm. By combining measurement channels that are non absorbing and thus sensitive to total cross sectional area with other channels that are absorbing and include sensitivities to particle size, the observed radiances can provide estimates of optical depth (τ) and effective radius (re). Ice water path is calculated directly from these values. Validation of the retrievals is essential for eventual development of parameterizations that can be assimilated into GCMs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.