This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this paper, we introduce a novel hybrid predictive patterning method combining two patterning technologies which have each individually been widely used for process tuning, mask correction and process-design cooptimization. These technologies are rigorous lithography simulation and inverse lithography technology (ILT). Rigorous lithography simulation has been extensively used for process development/tuning, lithography tool user setup, photoresist hot-spot detection, photoresist-etch interaction analysis, lithography-TCAD interactions/sensitivities, source optimization and basic lithography design rule exploration. ILT has been extensively used in a range of lithographic areas including logic hot-spot fixing, memory layout correction, dense memory cell optimization, assist feature (AF) optimization, source optimization, complex patterning design rules and design-technology co-optimization (DTCO). The combined optimization capability of these two technologies will therefore have a wide range of useful applications. We investigate the benefits of the new functionality for a few of these advanced applications including correction for photoresist top loss and resist scumming hotspots.
This new integrated flow consists of applying ILT to the difficult core region and traditional rule-based assist features (RBAFs) with OPC to the peripheral region of a DRAM contact layer. Comparisons of wafer results between the ILT process and the non-ILT process showed the lithographic benefits of ILT and its ability to enable a robust single patterning process for this low-k1 device layer. Advanced modeling with a negative tone develop (NTD) process achieved the accuracy levels needed for ILT to control feature shapes through dose and focus. Details of these afore mentioned results will be described in the paper.
Advanced computational methods such as ILT and model-based SRAF optimization are well known to have considerable benefits in process window and resolution for low-K1 193 lithography. However, these methods have not been well studied to understand their benefits for lower-K1 EUV lithography where fabs must push EUV resolution, 2D accuracy and process window to their limits. In this paper, we investigate where inverse lithography methods can improve EUV patterning weaknesses vs. traditional OPC/RET. We first show how ILT can be used to guide a better understanding of optimal solutions for EUV mask synthesis. We then provide detailed comparisons of ILT and traditional methods on a wide range of mask synthesis applications.
View contact details
No SPIE Account? Create one