Here, we demonstrate the six-wavelength mode-locking and hybrid mode-locking operation in an erbium-doped fiber laser (EDFL) with an ultra-long-period grating (ULPG) by properly adjusting the pump power and the cavity parameters. The ULPG is fabricated by using the fused biconical method with a GPX-3000 glass processing system. Study found that, the ULPG exhibits dual-function, that is, mode-locker and multiwavelength filter. Our finding implies that apart from its fantastic sensing application, the ULPG may also possess attractive nonlinear optical property for ultrafast photonics.
We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (∼1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.