The detailed area and spatial distribution of irrigated and rainfed wheat can help forecast wheat yield and study water use efficiency. However, the similar spectral characteristics of irrigated and rainfed wheat make it difficult to separate them with low-spatial resolution or several high-spatial resolution images on the high heterogeneity of the southern Loess Plateau. To solve this challenge, this study used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and Enhanced STARFM (ESTARFM) to generate time series of the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI) at a 30-m resolution by fusing Moderate Resolution Imaging Spectroradiometer and Landsat data. Then, the phenological feature extracted from the predicted NDVI is combined with an auxiliary dataset to classify irrigated and rainfed wheat using the support vector machine classifier. An overall classification accuracy of 93.7% and a Kappa coefficient of 0.91 are achieved. Compared with corresponding high-resolution Google Earth images, the spatial distribution of the classification was consistent with actual land cover. This study demonstrates that the classification approach could classify irrigated and rainfed wheat in high heterogeneity regions and crops with smaller spectral characteristic differences. Moreover, it could be implemented across larger geographic regions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.