We present the design, assembly, alignment, and verification process of the wide field corrector for the Korea Microlensing Telescope Network (KMTNet) 1.6 meter optical telescope. The optical configuration of the KMTNet telescope is prime focus, having a wide field corrector and the CCD camera on the topside of Optical Tube Assembly (OTA). The corrector is made of four lenses designed to have all spherical surfaces, being the largest one of 552 mm physical diameter. Combining with a purely parabolic primary mirror, this optical design makes easier to fabricate, to align, and to test the wide field optics. The centering process of the optics in the lens cell was performed on a precision rotary table using an indicator. After the centering, we mounted three large and heavy lenses on each cell by injecting the continuous Room Temperature Vulcanizing (RTV) silicon rubber bonding via a syringe.
A prototype of large wide field telescope is a Cassegrain telescope which covers 2° field of view with two hyperbolic mirrors, a 0.5 m primary mirror and a 0.2 m secondary mirror with multiple correction lenses. To fulfill the optical and mechanical performance requirements in design and development phase extensive finite element analyses using NX NASTRAN and optical analyses with CODE V and PCFRINGE have been conducted for the structure of optical system. Analyses include static deformation (gravity and thermal), frequency, dynamic response analysis, and optical performance evaluations for minimum optical deformation. Image motion is also calculated based on line of sight sensitivity equations integrated in finite element models. A parametric process was performed for the design optimization to produce highest fundamental frequency for a given weight, as well as to deal with the normal concerns about global performance.
The Korea Astronomy and Space Science Institute (KASI) are under development three 1.6m optical telescopes for the
Korea Micro-lensing Telescope Network (KMTNet) project. These will be installed at three southern observatories in
Chile, South Africa, and Australia by middle 2014 to monitor dense star fields like the Galactic bulge and Large
Magellanic Cloud. The primary scientific goal of the project is to discover numerous extra-solar planets using the
gravitational micro-lensing technique. We have completed the final design of the telescope. The most critical design
issue was wide-field optics. The project science requires the Delivered Image Quality (DIQ) of less than 1.0 arcsec
FWHM within 1.2 degree radius FOV, under atmospheric seeing of 0.75 arcsec. We chose the prime-focus configuration
and realized the DIQ requirement by using a purely parabolic primary mirror and four corrector lenses with all spherical
surfaces. We present design results of the wide-field optics, the primary mirror coating and support, and the focus system
with three linear actuators on the head ring.
The Korea Astronomy and Space Science Institute (KASI) is building the KASI Near Infrared Camera System (KASINICS) for the 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. With KASINICS we will mostly do time monitoring observations, e.g., thermal variations of Jovian planet atmospheres, variable stars, and blazars. We use a 512 x 512 InSb array (Aladdin III Quadrant, Raytheon Co.) for L-band observations as well as J, H, and Ks-bands. The field-of-view of the array is 6 x 6 arcmin with 0.7 arcsec/pixel. Since the SOAO 61-cm telescope was originally designed for visible band observations, we adopt an Offner relay optical system with a Lyot stop to eliminate thermal background emission from the telescope structures. In order to minimize weight and volume, and to overcome thermal contraction problems, we optimize the mechanical design of the camera using the finite-element-method (FEM) analysis. Most of the camera parts including the mirrors are manufactured from the same melt of aluminum alloy to ensure homologous contraction from room temperature to 70 K. We also developed a new control electronics system for the InSb array (see the other paper by Cho et al. in this proceedings). KASINICS is now under the performance test and planned to be in operation at the end of 2006.
KEYWORDS: Digital signal processing, Clocks, Video, Sensors, Astronomy, Space telescopes, Field programmable gate arrays, Interfaces, Readout integrated circuits, Cameras
Korea Astronomy and Space Science Institute (KASI) is developing the KASI Near Infrared Camera System (KASINICS) which will be installed on the 61 cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. KASINICS is equipped with a ALADDIN III Quadrant (512×512 InSb array, manufactured by Raytheon). For this instrument, we make a new IR array control electronics system. The controller consists of DSP, Bias, Clock, and Video boards which are installed on a VME bus system. The DSP board includes TMS320C6713, FPGA, and 384MB SDRAM. Clock patterns are downloaded from a PC and stored on the FPGA. USB 2.0 is used for the communication with the PC and UART for the serial communication with peripherals. Each of two video boards has 4 video channels. The Bias board provides 16 voltage sources and the Clock board has 15 clock channels. Our goal of readout speed is 10 frames sec-1. We have successfully finished operational tests of the controller using a 256×256 ROIC (CRC744). We are now upgrading the system for the ALADDIN III array. We plan to operate KASINICS by the end of 2006.
KEYWORDS: Sensors, Digital signal processing, Control systems, Camera shutters, Electronics, Sun, Spectral resolution, Microchannel plates, Mirrors, Spectrographs
The SPEAR micro-satellite payload consists of dual imaging spectrographs optimized for detection of the faint, diffuse FUV (900-1750 Å) radiation emitted from interstellar gas. The instrument provides spectral resolution, R~750, and long slit imaging of <10' over a large (8°x5') field of view. We enhance the sensitivity by using shutters and filters for removal of background noise. Each spectrograph channel uses identically figured optics: a parabolic-cylinder entrance mirror and a constant-ruled ellipsoidal grating. Two microchannel plate photon-counting detectors share a single delay-line encoding system. A payload electronics system conditions data and controls the instrument. We will describe the design and predicted performance of the SPEAR instrument system and its elements.
The SPEAR (Spectroscopy of Plasma Evolution from Astrophysical Radiation) mission to map the far ultraviolet sky uses micro-channel plate (MCP) detectors with a crossed delay line anode to record photon arrival events. SPEAR has two MCP detectors, each with a ~25mm x 25 mm active area. The unconventional anode design allows for the use of a single set of position encoding electronics for both detector fields. The centroid position of the charge cloud, generated by the photon-stimulated MCP, is determined by measuring the arrival times at both ends of the anode following amplification and external delay. The temporal response of the detector electronics system determines the readout's positional resolution for the charge centroid. High temporal resolution (< 35ps x 75ps FWHM) and low power consumption (<6W) are required for the SPEAR detector electronics system. We describe the development and performance of the detector electronics system for the SPEAR mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.