"A joint project has been proposed by the Chinese and Spanish astronomy communities, to develop a high-resolution, ultra- stable spectrograph for the Gran Telescopio Canarias (GTC) at La Palma. Being expected to conduct precise radial velocity (PRV) measurement with extreme precision of up to 10 cm s−1, the instrument would promote the very high, present interest in the astronomical community to detect and characterize exoplanets. The project successfully passed the conceptual design review (CoDR) in 2019. The instrument is composed of a near-UV band spectrograph (UVS) and a visible band spectrograph (VIS). They provide a spectral resolving power of R ≥100,000 in the visible band (420 nm – 780 nm), and R≥25,000 in the UV band (310 nm – 420 nm). The VIS subsystem will be enclosed in an ultra-stable environment in the Coudé room for the stellar precise radial velocity (PRV) measurements. T he UVS subsystem will be located near the Nasmyth focus to improve the total throughput at the wavelength shorter than 400 nm, to ensure various additional science cases ranging from stellar evolution to the measurement of fundamental constants. This paper gives an overview of the project background, science cases, and technical considerations during the conceptual design phase."
IMSP is the versatile first-light instrument under construction for the 4m telescope in China. The special feature of IMSP is the multimode operation modes and high-efficiency. Direct imaging mode is designed to work in a synchronous multi-color bands covering from 360 to 1700 nm using two dichroic mirrors with a 3’x3’ field of view (FOV). Long-slit spectrograph mode supports two spectral resolutions operation modes (R=1000 and 5000) via different combination of Volume Phase Holographic Prisms to cover the whole spectrum in visible. High resolution spectrograph mode (R=30000-60000) with wavelength range from 380 to 800 nm is reserved using fiber link system connected from Nasmyth foci to the enviroment controled room. The IMSP is planned to strart commssion at the end of 2021. In this paper, the lastest status of IMSP development will be given, including the final optical design and the integration of each sub-system.
The non-redundant aperture masking techniques transforms telescope into a Fizeau interferometer by a simple action of placing an aperture mask over the pupil, the limited resolution set by atmospheric fluctuations can be overcome by closure phase techniques to obtain diffraction-limited images. For binary stars, the closure phases can not only eliminate the influence of atmospheric fluctuations on ground-based optical telescope, but also have a functional relationship with contrast and angular separation of binary stars. In this paper, basing on the mathematical model of non-redundant aperture masking detecting binary stars, we carry out the computer simulation and laboratory experiment by using the Golay-6 mask.
The Next Generation Palomar Spectrograph (NGPS) is designed for Cassergrain focus of the Hale 200-inch telescope to replace the old Palomar Double Spectrograph (DBSP). NGPS have higher throughput, efficiency and realities spectrograph. NGPS is designed as three channels to cover the wavelength from 365nm to 1050nm with no spectral gap and delivers a resolving power with a 1.5” slit exceeding R=1800 overall the observable range. The peak efficiency of the whole throughput (from sky to detector) at the wavelength is 35.3% which is consistent with throughput achieved by some of the world’s most efficient spectrographs.
The design and performance of a three-channel image and long-slit spectrograph for the new 4-m telescope in China are described. The direct imaging covers a 3 arcmin by 3 arcmin field of view and a large wavelength range 370-1,600 nm, it has two optical channels and one near infrared channel with different filters. The spectrograph with a long slit is to provide two observing modes including the following spectral resolutions: R1000 and R5000. For dispersing optical elements it use volume-phased holographic grisms (VPHG) at each of the spectroscopic modes to simplify the camera system. The low resolution mode (R1000) is provided by consecutive observations with the spectral ranges: 360-860 nm, however it adopts only one VPHG for the first light. The spectral range of medium resolution mode (R5000) is 460- 750nm, it is constrained with the use of a 4k × 4k CCD detector of 15 μm pixel size. Peak efficient in the spectrograph are achieved to be higher than 50% in different resolution mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.