Due to the limitations of gaze detection based on one eye, binocular gaze detection using the gaze positions of both eyes has been researched. Most previous binocular gaze detection research calculated a gaze position as the simple average position of the detected gaze points of both eyes. To improve this approach, we propose a new binocular gaze detection method using a fuzzy algorithm with quality measurement of both eyes. The proposed method is used in the following three ways. First, in order to combine the gaze points of the left and right eyes, we measure four qualities on both eyes: distortion by an eyelid, distortion by the specular reflection (SR), the level of circularity of the pupil, and the distance between the pupil boundary and the SR center. Second, in order to obtain a more accurate pupil boundary, we compensate the distorted boundary of a pupil by an eyelid based on information from the lower half-circle of the pupil. Third, the final gaze position is calculated using a fuzzy algorithm based on four quality-measured scores. Experimental results show that the root-mean-square error of gaze estimation by the proposed method is approximately 0.67518 deg.
Multimedia service can be categorized as conversational, streaming, and download services, which differ in temporal and semantic quality requirements. Performance of SVC (Scalable video coding) is analyzed in the three dimensional (spatio-temporal) frequency domain. Based on the analysis, SVC scheme can be modified to satisfy various requirements as being compliant to the international standards. Decoding without enhancement layer data results in drift phenomenon. Several drift-free techniques are analyzed.
In this paper, the problem of integrating scalable media encoding mechanisms with emerging solutions/protocols for media streaming is addressed. In this, we consider the cases of scalable media encoding technologies, trying to combine them with emerging protocols and mechanisms for transmission rate adaptation. An architecture comprising of a scalable media encoder supported by DCCP transport protocol is proposed. The proposal introduces a buffer management mechanism that takes advantage of the rate adaptation features of the scalable media encoding for complementing DCCPs' inherent congestion control.
In this paper, we present an effective streaming method for MPEG-4 contents using the schedule information of image objects and progressive JPEG. The proposed method is designed for Interactive Scalable Multimedia Streaming (ISMuS) system. In rich interactive contents, the amount of image objects is not negligible for a streaming service with QoS. If a streaming system does not manage the image data, it could create a bottleneck in the system. The proposed method considers the schedule information of image objects to be displayed within a specific time frame, generally within a few second. Since the proposed method uses the progressive JPEG instead of Baseline JPEG, it treats image object as scalable Object. The streaming server sends surely DC data of each image object and AC data of image object is sent only when there is an enough room for AC data in network bandwidth. The priorities of audio and video elementary stream are also within the consideration as well as those image objects according to the varying network status.
Technical evolutions in the field of information technology have changed many aspects of the industries and the life of human beings. Internet and broadcasting technologies act as core ingredients for this revolution. Various new services that were never possible are now available to general public by utilizing these technologies. Multimedia service via IP networks becomes one of easily accessible service in these days. Technical advances in Internet services, the provision of constantly increasing network bandwidth capacity, and the evolution of multimedia technologies have made the demands for multimedia streaming services increased explosively. With this increasing demand Internet becomes deluged with multimedia traffics. Although multimedia streaming services became indispensable, the quality of a multimedia service over Internet can not be technically guaranteed. Recently users demand multimedia service whose quality is competitive to the traditional TV broadcasting service with additional functionalities. Such additional functionalities include interactivity, scalability, and adaptability. A multimedia that comprises these ancillary functionalities is often called richmedia. In order to satisfy aforementioned requirements, Interactive Scalable Multimedia Streaming (ISMuS) platform is designed and developed. In this paper, the architecture, implementation, and additional functionalities of ISMuS platform are presented. The presented platform is capable of providing user interactions based on MPEG-4 Systems technology [1] and supporting an efficient multimedia distribution through an overlay network technology. Loaded with feature-rich technologies, the platform can serve both on-demand and broadcast-like richmedia services.
KEYWORDS: Video, Multimedia, Stereolithography, Chemical species, Internet, Visualization, Networks, Video coding, Scalable video coding, Standards development
In this paper, we present an MPEG-4 contents streaming system and propose MPEG-4 contents streaming scheme by using priority. The presented streaming system which consists of a server and a client supports MPEG-4 contents compliant with ISO/IEC 14496-1 and enables a user to interact with MPEG-4 contents over IP networks. The server consists of GUI, Server Management Layer, Sync Layer, and Delivery Layer. The client supports to display MPEG-4 contents stored in local storage or received through IP networks. Moreover, we propose an MPEG-4 contents streaming scheme that the object a user prefers to watch is sent first by increasing priority and objects with low priority are dropped at a server side when network bandwidth is not enough to transmit all objects that are supposed to appear in the scene. We made experiment of the proposed scheme with the presented MPEG-4 contents streaming system, and the experiment results are shown in this paper. If we use the proposed scheme for MPEG-4 contents streaming, it is possible for a user to watch a video of interest in high quality and video of indifference in low quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.