As the photomask design rules continue to shrink towards 45nm and below, the defect classification criteria is
becoming more challenging to be set accurately. Pattern fidelity issues and masks defects that were once considered
insignificant or merely nuisances are now yield-limiting. On the other hand, there are still cases of small defects
captured during reticle inspection but will not print on the wafer. In addition, in a production setting environment it is
critical to ascertain quickly and efficiently the true lithographic effect of reticle defects in order to avoid yield and cycle
time impacts.
As a starting point, it is best to inspect the reticle at the highest sensitivity to find all defects and anomalies. From there,
fast and efficient means to sort and prioritize defects are necessary for inspection operators' and engineers' convenience.
Then, it is critical to model all the defects accurately for their lithographic impact. Finally, an accurate lithography-based
set of reticle defect disposition criteria can be developed for the manufacturing process flow.
The focus of this study is on contact or hole patterns since the issues regarding capture of defects on such patterns are
typically more complex than the ones on line and space patterns. The intent is to assess and devise defect disposition
criteria for contact hole layers utilizing KLA-Tencor's 5X6 DUV inspection system with both standard die-to-die and
Litho2 algorithms and the Automated Mask Defect Disposition (AMDD) system. AMDD lithographic printability
results will be compared to AIMS results and printed results on wafer.
As the design rule continues to shrink towards 65nm and beyond, the defect criteria is becoming ever more challenging.
The pattern fidelity and reticle defects that were once considered as insignificant or nuisance are now migrating to
yield-limiting. As a result, it is important to conduct After Develop Inspection (ADI) to identify where in the process the
small contamination and particles originate from. The intent of this study is to identify the defect source by utilizing
KLA-Tencor's SLF die-to-die reflected light mode and ADI algorithm for the post development resist layer inspection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.