Infrared optics technology has continued to advance in both military and civilian applications. In parallel, infrared transmitting lenses have been developed to improve the performance of infrared cameras. However, commercial Chalcogenide glass includes As or Sb which are not unsuitable for smart devices. To address this issue, novel Ge-Ga-Se ternary compositions were developed and evaluated for the lens applications. XRD was used to determine the glassforming ability. glass transition temperature was measured to determine the thermal properties. Some mechanical properties such as Knoop hardness and its coefficient of thermal expansion were performed to determine the durability of the glass. The average transmittance in the range of 8~12μm shown 60.819% and the refractive index @8, 10, 12μm were 2.51425, 2.50706 and 2.49798, respectively. The dispersion of current system shows 92.63, which is good enough to design LWIR lens.
Multispectral infrared sensor is a novel technology for detecting infrared, providing simultaneous spectral and spatial information of the target object. However, conventional multispectral infrared sensors face limitations in quantum efficiency due to a low pixel filling ratio. The integration of bandpass filters and sensors poses challenges, including processing difficulty, filter layer thickness, and material constraints.
In this work, we present a highly efficient, miniaturized optical filter with a plasmonic filter-based microlens array for a high-efficiency multispectral infrared sensor. Microlens arrays enhance light-gathering efficiency in infrared elements, resulting in high quantum efficiency, while the plasmonic filter, utilizing a 3D post array nanostructure, offers wavelength selectivity. This approach streamlines the integration of micro/nanostructures into infrared imaging sensors, significantly enhancing sensing performance beyond existing methods.
LiTaO3 (lithium tantalate) crystal is widely used in infrared detection, acoustic surface wave devices and optical applications due to its outstanding piezoelectric, pyroelectric, and nonlinear optical properties. Over the past few decades, LiTaO3 single crystals have been studied intensively for their excellent acoustic and electro-optical properties. For the single crystal growth of LiTaO3, raw materials of Li2CO3 and Ta2O5 need to be pretreated to form LiTaO3 polycrystal. However, high temperature, more than 1200 °C and long heating time are required for adequate crystallization.
In this study, we prepared LiTaO3 polycrystalline powder by solid state reaction synthesis from the raw powder of Li2CO3, Ta2O5, and cyanuric acid, which is an additive for a short reaction time and relatively low temperatures. The cyanuric acid, added into the mixture of Li2CO3 and Ta2O5, plays a role of fuel and inducer to produce intermediate compounds. Several temperatures and cyanuric acid composition ratio were employed to optimize the synthesis condition of pretreated LiTaO3. Structural and composition analysis were conducted to characterize the synthesized LiTaO3 powders. The optimized synthesis shows excellent ability to reduce lithium-ion volatilization and suggests an efficient way to manufacture high-quality LiTaO3 polycrystalline powders.
Lithium tantalate (LiTaO3) crystal is widely used in infrared detection, acoustic surface wave devices and optical applications due to its outstanding piezoelectric, pyroelectric, and nonlinear optical properties. Over the past few decades, LiTaO3 single crystals have been studied intensively for their excellent acoustic and electro-optical properties. Today, most of LiTaO3 single crystals are made by czochralski methods, which is well-defined growing methods for high quality single crystal. To grow LiTaO3 single crystal in optimized condition, hot-zone structure should be designed properly. Temperature gradient, melt flow and heat dissipation should be optimized by managing the hot-zone structure. Especially, minimizing the heat dissipation and temperature gradient play a key role deciding the quality of grown single crystal.
In this study, we designed hot-zone structure in czochralski furnace for LiTaO3 single crystal growth. We added ring parts above the iridium crucible in which LiTaO3 crystal grow. It reduced heat dissipation and temperature gradient inside the hot-zone through bothering heat flow toward upper side of the system. Vertical and horizontal temperature gradient in whole range position was analyzed. Optimized size and position of ring parts were designed. For the simulation of this system, CGSim SW was used. We expect that our research results would contribute to the development of LiTaO3 single crystal growing technology.
LiDAR (Light Detection and Ranging) is thought to be one of the necessary sensors for automatic driving systems and advanced driver assistance systems. Recently, the LiDAR of the automotive vehicle is installed in the grille or near the headlights. These installed positions are very weak for a variety of pollutions. One of the measures to keep the LiDAR window surface clean is the use of anti-fingerprint coating. In this study, the hybrid optical coating for automotive LiDAR window (BK7 glass) which have the multifunction of UV-VIS absorption, NIR transmission, mechanical hardness and easy cleanability was developed. The surface hardness of the whole front coating and performance of anti-fingerprint coating were measured. The several reliability tests were performed. The coated window passed all tests.
For chalcogenide-based infrared glass materials, the need was emphasized along with the spread of thermal imaging cameras in COVID 19 environment. Commercial Ge-As-Se glass system exhibits a dispersion value of 100~180 and a refractive index of 2.5 or more, and is suitable for the glass molding process, so it is used as an aspherical infrared lens for various thermal imaging cameras. However, some compositions are not suitable for glass molding process. In this study, the composition of the long wavelength infrared glass melting was designed based on the Ge-As-Se system with a Ge composition range of 0~35 at%, As composition range of 20~40 at%, and Se composition range of 25~60 at%. As a result of XRD analysis for each Ge-As-Se-based composition, it was confirmed that all amorphous grains were obtained in the developed composition area. For the Ge-As-Se glass-forming composition region, the glass transition temperature ranged from 180 to 425°C. The refractive index was measured using the prism method in the 3 to 12 μm wavelength band. The refractive index (λ=10 μm) of Ge5As40Se55 and Ge5As35Se60 was 2.6913 and 2.6538, respectively. Moldability test was performed using a glass molding press. As a result of observing whether the lens has internal defects and microcracks after molding, it was confirmed that there was no abnormality and that it was suitable for glass molding process.
A diamond-like carbon thin film was deposited on the outer face of the germanium (Ge) window to protect the infrared lenses from a harsh environment in automotive application. Infrared transmittance and residual stress of a tetrahedral amorphous carbon (ta-C) thin film by a filtered cathodic vacuum arc (FCVA) source were investigated to increase the lifetime of a Ge window. They were found to have a trade-off relation about the change of the substrate pulse voltage. By introducing methane gas in FCVA deposition process, a hydrogenated ta-C (ta-C:H) thin film of which both IR transmittance and residual stress was improved could be obtained. A Ge window coated with ta-C:H thin film with 1.43 μm thickness showed anti-reflective effect in long-wave infrared. The hardness of ta-C:H thin film on Ge window was higher than 30 GPa. Adhesion, severe abrasion, temperature, humidity and salt solubility tests were carried out in accordance with MIL-C-48497A.
In the present study, zinc molybdenum tellurite glasses with the molar composition of (1−x)TeO2−yMoO3−xZnO and (1−x)TeO2−yMoO3−xZnO, where x = 10, 20, and 30 mol%, and y = 10 and 20 mol%, were prepared by a high temperature melt quenching technique and studied their thermal, thermo-mechanical and mechanical properties. From the thermal analysis, it was found that the glass transition (Tg), crystallization (Tx) and stability parameters slightly increased with increase in ZnO content in both series of glasses. Thermal expansion coefficient decreases from 16.56 to 14.67×10-6/K as the ZnO content increases from 10 to 30 mol%. Knoop hardness slightly decreases from 307 to 290 kgf/mm2 with increase in ZnO content from 10 to 30 mol% for 10 mol% of MoO3 content, whereas it increases for 20 mol% of MoO3. Based on the results, it concludes that the number of bridging oxygens and network compactness of tellurite matrix increased with increase in ZnO content varied from 10 to 30 mol%.
A series of Er3+/Yb3+ co-doped fluorophosphate glasses with varying YbF3 concentration were prepared by a high temperature melt quenching technique. The effect of sensitization on various spectroscopic properties of Er3+-doped fluorophosphate glasses was investigated. Using the Judd-Ofelt theory, the intensity parameters (Ωλ, λ = 2, 4 and 6) were evaluated from the absorption spectra of glasses. Absorption and emission cross-sections were determined by using the McCumber theory. The dependence of Er3+ ions near infrared emission (1.54 μm) on the Yb3+ concentration was investigated. The upconversion studies were also carried out at room temperature and low temperatures. The wider bandwidth (78 nm), larger emission cross-section (9.86 x 10-21 cm2) and longer fluorescence lifetime (12.37 ms) were noticed for the 4I13/2 → 4I15/2 transition of ABS3Er4Yb glass. The temperature sensing behavior of the ABS3Er5Yb glass was studied by using the fluorescence intensity ratio technique in the temperature range from 100 K to 280 K. The sensitivity and temperature of the maximum sensitivity were found to be of the order of 15 x 10−4 K−1 and 271 K, respectively. The results suggested that the present glass composition has possibilities for optical applications.
KEYWORDS: Copper indium gallium selenide, Laser induced breakdown spectroscopy, Thin film solar cells, Manufacturing, Solar cells, Chemical elements, Statistical analysis, Thin films, Gallium, Analytical research
The characteristics of laser-induced breakdown spectroscopy (LIBS) such as short measurement time and no sample preparation provide clear advantages over other analytical techniques for rapid elemental analysis at manufacturing sites where the composition of products need to be determined in real-time for process monitoring or quality control. Thin film solar cells based on CuIn1-xGaxSe2 (CIGS), polycrystalline compound semiconductor material, have unique advantages of high efficiency (>20%), long-term stability, and low manufacturing cost over other types of solar cell. The electrical and optical properties of the thin CIGS films are closely related to the concentration ratios among its major constituent elements Cu, In, Ga and Se such as Ga/(Ga + In) and Cu/(Ga + In), and thus an accurate measurement of the composition of CIGS thin films has been an issue among CIGS solar cell researchers, requiring a fast and reliable technique for composition analysis. This paper presents the results of nanosecond (ns) and femtosecond (fs) laser based LIBS analysis of thin CIGS films. The critical issues for LIBS analysis of CIGS thin films such are discussed in comparison with ns- and fs-LIBS measurement results. The calibration of LIBS signal intensity ratios with respect to reference concentration data is carried out and the results of optimal line selection for LIBS analysis, depth profiling capability, and reproducibility are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.