Living cells are likely to change their internal temperature during such natural processes as division, gene expression etc. Additionally, they actively react to environmental changes in temperature. Therefore, monitoring of intracell or near cell temperature opens the door for understanding intra-cell chemistry. However, most biological temperature changes expected be relatively small and transient, due to interactions with its environment. Hence, detecting this temperature change is quite challenging.
We present the first systematic study of GeV spectra temperature shits on several different samples all demonstrating similar behavior. This temperature shits of zero-phonon line of GeV color center is powerful tool for precise all-optical detection of the temperature. Based on these studies we demonstrate all-optical thermometry with resolution well below 0.1K. Spatial resolution was demonstrated via implementation of the fiber based probe. Besides, we conducted series of proof of principal experiments in pillars and nanodiamonds this way proving possibility to measure temperature with submicron resolution. Achieved resolution together with chemical and physical inertness of nanodiamond passes the way for understanding of thermal function of living organisms and cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.