Light-matter interaction is crucial in many application domains of nanophotonics, including biosensing, trapping at the nanoscale, nonlinear optics, and lasing. Many approaches, mainly based on photonic and plasmonic resonant structures, have been investigated to enhance and tailor the interaction, but those based on all-dielectric metasurfaces have several unique advantages: low loss, easy excitation and readout, possibility of engineering the optical field distribution with many degrees of freedom, and electric tuning. Here we show that properly designed all-dielectric metasurfaces can support silicon-slot quasi-bound states in the continuum modes resonating in the near-infrared, strongly confining light in air and, consequently, enhancing light-matter interaction. Some samples of the designed metasurface have been fabricated in a silicon-on-sapphire wafer by e-beam lithography and reactive ion etching. The optical characterization of the chip has confirmed the excitation of the quasi-bound state in the continuum resonant modes, with measured Q-factor values exceeding 700.
In this work, a novel technique to create adaptive liquid crystal lenses and other optical components is proposed and demonstrated. This proposal avoid all of the previous techniques disadvantages, a simple fabrication process and low voltage control is required, and thin lenses can be obtained. The novelty of the proposal, resides in a micro-structured indium tin oxide, designed to transmit the voltage homogeneously across the entire surface of the active area. This design is composed of two main elements, a transmission line that generates a voltage gradient, and a series of combs that distribute the voltage across the entire active area. Two different apertures are designed. One of this designs is fabricated and measured to demonstrate the viability of the idea. This novel structure open new venues of research in phase-only LC optical devices.
In this work, a novel method to obtain all-dielectric toroidal response metasurfaces in the W-band and THz range is demonstrated. Two designs are proposed, a symmetric and asymmetric disk metasurface. The first design is intended to corroborate the theoretical analysis, demonstrating the excitation of a strong toroidal mode resonance at 93.2 GHz. Then, the second design is used to demonstrate that symmetry-breaking variations in the disk dimensions, could lead to birefringent metasurfaces, affecting the polarization of the impinging light. Two structures are designed, a polarization beam splitter and a polarization converter. Such devices are difficult to obtain at the target frequency range with low absorption, so they could be of particular interest for the next generation of 5G communications and THz devices.
A localized surface plasmon resonance based fiber optic sensor for temperature sensing has been analyzed theoretically. The effects of the size of the spherical metal nanoparticle on the performance of the sensor have been studied in detail. The high sensitivity of localized surface plasmon resonances to refraction index changes, in collaboration with the high thermo-optic coefficients of Liquid Crystal materials, has result in a fiber optical sensor with high temperature sensitivity. This sensitivity has been demonstrated to be dependent on nanoparticle size. Maximum sensitivities of 4nm/°C can be obtained for some specific temperature ranges. The proposed sensor will be low cost, and will have all the typical advantages of fiber optic sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.