Differential Absorption Lidar (DIAL) is a very effective technique for standoff detection of various toxic agents in the
atmosphere. The Lidar backscattered signal received usually has poor signal to noise (SNR) ratio. In order to improve the
SNR, statistical averaging over a number of laser pulses is employed. The aim of the present work is to select a particular
statistical averaging technique, which is most suitable in removing the noise in Lidar return signals. The DIAL system
considered here uses laser transmitters based on OPO based (2-5 μm) and TEA CO2 (9-11μm) lasers. Eight commonly
used chemical warfare agents including five nerve agents and three blister agents have been considered here as examples
of toxic agents. A Graphical User Interface (GUI) software has been developed in LabVIEW to simulate return signals
mixed with the expected noise levels. A toxic agent cloud with a given thickness and concentration has been assumed to
be detected in the ambient atmospheric conditions at various ranges up to 5 Km. Data for 200 pulses per agent was stored
in the computer memory. Various known statistical averaging techniques were used and number concentrations of
particular agent have been computed and compared with ideal Lidar return signal values. This exercise was repeated for
all the eight agents and based on the results obtained; the most suitable averaging technique has been selected.
Simulation studies have been carried out to analyze the performance of a Differential Absorption Lidar (DIAL) system for the remote detection of a large variety of toxic agents in the 2-5 μm and 9-11 μm spectral bands. Stand-alone Graphical User Interface (GUI) software has been developed in the MATLAB platform to perform the simulation operations. It takes various system inputs from the user and computes the required laser energy to be transmitted, backscattered signal strengths, signal-to-noise ratio and minimum detectable concentrations for various agents from different ranges for the given system parameters. It has the flexibility of varying any of the system parameters for computation in order to provide inputs for the required design of proposed DIAL system. This software has the advantage of optimizing system parameters in the design of Lidar system. As a case study, the DIAL system with specified pulse energy of OPO based laser transmitter (2-5 μm) and a TEA CO2 laser transmitter (9-11μm) has been considered. The proposed system further consists of a 500-mm diameter Newtonian telescope, 0.5-mm diameter detector and 10-MHz digitizer. A toxic agent cloud with given thickness and concentration has been assumed to be detected in the ambient atmospheric conditions at various ranges between 0.2 and 5 km. For a given set of system parameters, the required energy of laser transmitter, power levels of the return signals, signal-to-noise ratio and minimum detectable concentrations from different ranges have been calculated for each of these toxic agents.
Computer simulations have been carried out to optimize the IR Differential Absorption Lidar (DIAL) system in order to measure the gaseous pollutants released by the industries. The concentration of the gaseous pollutants due to elevated sources is computed using the Gaussian dispersion model. For given atmospheric conditions and stack physical parameters, the downwind distance (x) at which the SO2 reaches the safe limit of its toxicity has been computed at given other two coordinates (y, z) with respect to chimney. The gaseous pollutants released by the industries will be effectively monitored by the proposed DIAL system, which will be placed at New Delhi (28.35 degrees N, 77.12 degrees E), India. The performance of the Lidar has been optimized based on the various system parameters incorporating the atmospheric conditions and stack physical parameters. Further, the backscattered return powers at on- & -off line wavelengths, the required energy to be transmitted and the position at which the lidar system should be posted have been computed in order to monitor SO2.
One of the main functions of a Doppler Lidar system is to measure the atmospheric wind speed and direction. It is done by measuring the Doppler shift in frequency of the backscattered laser beam. A frequency stabilized Nd: YAG laser source operating at its fundamental wavelength of 1064 nm will be used in the proposed incoherent detection system. Edge technique is employed along with a high-resolution optical filter in this system to achieve high accuracy in the measurement of wind velocity. The performance of Doppler lidar system is estimated with realistic parameters. Analysis of the uncertainty in wind measurement is made by considering factors like lidar return signal levels, laser spectral width, etalon filter pass band (FWHM) etc. An accuracy of 0.25 m/s has been achieved in the wind speed up to an altitude of 5 km with 15-m range resolution in the proposed ground based Doppler Lidar system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.