Active matrix flat panel imagers (AMFPIs) with thin film transistor (TFT) arrays are becoming the standard for digital x-ray imaging due to their high image quality and real time readout capabilities. However, in low dose applications their performance is degraded by electronic noise. A promising solution to this limitation is the Scintillator High-Gain Avalanche Rushing Photoconductor AMFPI (SHARP-AMFPI), an indirect detector that utilizes avalanche amorphous selenium (a-Se) to amplify optical signal from the scintillator prior to readout. We previously demonstrated the feasibility of a large area SHARP-AMFPI, however there are several areas of desired improvement. In this work, we present a newly fabricated SHARP-AMFPI prototype detector with the following developments: metal oxide hole blocking layer (HBL) with improved electron transport, transparent bias electrode for increased optical coupling, and detector assembly allowing for a back-irradiation (BI) geometry to improve detective quantum efficiency of scintillators. Our measurements showed that the new prototype has improved temporal performance, with lag and ghosting below 1%. We also show an improvement in optical coupling from 25% to 90% for cesium iodide (CsI) scintillator emissions. The remaining challenge of the SHARP-AMFPI is to reduce the dark current to prevent dielectric breakdown under high bias and further increase optical quantum efficiency (OQE) to CsI scintillators. We are proposing to use a newly developed quantum dot (QD) oxide layer, which shows to reduce the dark current by an order of magnitude, and tellurium doping, which could increase OQE to 85% to CsI at avalanche fields, in future prototype detectors.
Direct active matrix flat panel imagers (AMFPIs) using amorphous selenium (a-Se) offer high intrinsic spatial resolution but have limited x-ray quantum efficiency at general radiographic energies due to selenium’s low atomic number. Conversely, indirect AMFPIs using inorganic scintillators typically have superior x-ray quantum efficiency at these energies, but inferior spatial resolution and increased noise due to optical effects in the scintillator. These inherent limitations motivate alternative AMFPI designs to further improve detector xray sensitivity and signal-to-noise performance. Towards this goal, this work constructs and experimentally investigates the x-ray imaging performance of a novel direct-indirect prototype imager referred to as Hybrid AMFPI. The imager comprises a direct conversion a-Se layer that may be coupled to an interchangeable scintillator screen through a transparent blocking layer and bias electrode. In this direct-indirect “hybrid” configuration, a-Se serves as both an x-ray and optical sensor. Readout is performed by a thin-film transistor array with 85 μm pixel pitch. The prototype imager’s x-ray sensitivity, modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE) are measured in a direct AMFPI configuration (i.e. a-Se alone) and in a Hybrid configuration under identical x-ray exposure conditions and the results are compared. Contrast-detail and spatial resolution phantoms are also imaged using direct, Hybrid and indirect AMFPI configurations under identical exposure conditions to evaluate differences in their imaging performance.
Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 ± 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 ± 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.
Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.