KEYWORDS: Free space optics, Radio over Fiber, Antennas, Optical amplifiers, Signal to noise ratio, Extremely high frequency, Radio optics, Analog electronics, Fiber amplifiers, Free space
We demonstrate a fifth generation (5G) new radio (NR) signal transmitted by an analog optical and seamless antenna wireless connection at the frequency band of 60 GHz to exploit a high-frequency unlicensed frequency range. An optical frequency doubling technique, using two Mach–Zehnder modulators operating in a carrier suppressed and linear regime, respectively, was adopted to obtain the desired millimeter wave frequency at the photodetector’s output. The proposed system was tested with the 5G NR signals with a maximum bandwidth of 200 MHz and 64 quadrature amplitude modulation format. It was shown that the signal transmitted through the optical fiber and free space optical link with 1 m long seamless antenna transmission at 62 GHz was capable of meeting the signal quality requirements in terms of error vector magnitude. Moreover, the system phase noise performance showed an almost negligible difference between the various system configurations.
KEYWORDS: Extremely high frequency, Signal generators, Free space optics, Modulation, Optical amplifiers, Radio optics, Seaborgium, Photodetectors, Signal attenuation, Semiconductor optical amplifiers
A 5 Gb/s 32-QAM data transmission over a hybrid standard single-mode fibre (SSMF) and free-space optics (FSO) link has been experimentally demonstrated in the 42 − 90 GHz range for 5G networks deployment. Four-wave mixing (FWM) nonlinear effect in a semiconductor optical amplifier (SOA) experienced by a carrier suppressed double sideband modulated signal has been employed to photonically generate millimetre wave (mmW) signals with reduced electronics bandwidth. Both simulation and experimental results have been shown to describe the error vector magnitude (EVM) performance of the system. Large operation bandwidth is shown in our experimental setup, where measured penalties for 42 and 66 GHz are below 1 dB whereas 90 GHz leads to 3 dB penalty at 12 % EVM threshold. Sensitivity has also been estimated for optical back-to-back (OB2B), after SSMF and hybrid link transmissions for different mmW frequencies.
In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners’ mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.
Results from tests and analyses of multimode optical fibers for an avionic optical network under a variety of stress conditions are presented. Experiments revealed vibrational and temperature changes of distinct multimode fibers. Results lead to the discussion of influenced insertion losses and especially reduced bandwidth corresponding to modal distribution changes. It was determined that these crucial parameters could affect system reliability when an airplane network intersects thermal and vibrational variable environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.