Rapid development of machine learning techniques opens new application fields for Unmanned Aerial Vehicles technology, which include detection and classification of objects. It is possible to detect buildings, vehicles or various objects present near pipelines and industrial buildings. In some cases, such as monitoring of the critical infrastructure, accuracy of the detection is crucial. 2D data classification enables detecting an object and determining its basic parameters. 3D data, that can be obtained from drones, supplement 2D data, and can significantly increase the accuracy of detection and classification of objects. It also bares additional information and can simplify determination of dimensions of already classified objects. Furthermore, some objects, difficult for classification using 2D images, can be easily classified with 3D data. Such objects are for example: excavations in the ground, objects partially overshadowed by trees or fully covered by dried leaves. 3D data collected by drones is typically obtained with SfM (Structure from Motion) and Lidar (Light Detection and Ranging) methods. SfM provides three-dimensional data from the photos that have been collected for 2D analysis. The advantage of this method is high quality texture. The main problem is that this method is not useful for night flights due to lack of feature points on images. Lidar is a laser measurement method using data on the time of flight of a laser beam reflected from an obstacle (object). It allows to obtain 3D data in all light conditions. However, collected data does not have color information. The combination of both methods will provide dense and accurate point clouds with texture, which can be consequently used for detection and classification of objects. In this paper a pipeline for acquisition, merging and processing of 3D data gathered by drones is presented. The first step is to obtain assembled point clouds from Lidar in one coordinate system using GPS data. Then Lidar point cloud is integrated with SfM point clouds. 3D data generated this way also includes coordinates of camera in the moments when SfM photos were collected. The full 3D model of monitored area containing GPS coordinates and positions of camera may be used to simplify configuration of a supplementary flight in order to measure places where no measurement data was obtained or the density of point cloud was too low. Having a point cloud of the reconstructed object prepared in such way, it is possible to compare point clouds, features extracted from point clouds and geometry of already classified objects over time.
In this paper a fully automated 3D shape measurement and processing method is presented. It assumes that positioning of
measurement head in relation to measured object can be realized by specialized computer-controlled manipulator. On the
base of existing 3D scans, the proposed method calculates "next best view" position for measurement head. All 3D data
processing (filtering, ICP based fitting and final views integration) is performed automatically. Final 3D model is created
on the base of user specified parameters like accuracy of surface representation or density of surface sampling.
Exemplary system that implements all mentioned functionalities will be presented. The goal of this system is to
automatically (without any user attention) and rapidly (from days and weeks to hours) measure whole object with some
limitations to its properties: maximum measurement volume is described as a cylinder with 2,5m height and 1m radius,
maximum object's weight is 2 tons. Measurement head is automatically calibrated by the system and its possible working
volume starts from 120mm x 80mm x 60mm and ends up to 1,2m x 0,8m x 0,6m. Exemplary measurement result is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.