Grazing incidence reflections as a source of stray light are a problem which continues to beleaguer optical systems and instrumentation. These reflections tend to be specular and are a primary cause of ghosting. Traditional means of blackening (absorption) fail miserably. Techniques of scattering the undesirable/problem light into a larger (and more benign) solid angle, while successful, are often impractical. Furthermore, while these techniques excel at reducing ghosting, they typically redirect significant light into the diffuse background, reducing the SNR. Black flocking combines the advantages of absorption and scattering. Historical disadvantages of flocking are its poor durability and the difficulty of applying flock to irregular surfaces. Presented here, is the technique of electrostatic application, which overcomes these shortfalls. BRDF (bi-directional reflectance distribution function) measurements of black flocking are presented and comparisons made with other blackening techniques. An example of this technique is shown where it is used to improve a low-light spectrographic instrument. Finally, proposed specifications for the application of (black) flocking are made for use in optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.