Optical metasurfaces, planar sub-wavelength nano-antenna arrays with the singular ability to sculpt wave front in almost arbitrary manners, are poised to become a powerful tool enabling compact and high-performance optics with novel functionalities. A particularly intriguing research direction within this field is active metasurfaces, whose optical response can be dynamically tuned post-fabrication, thus allowing a plurality of applications unattainable with traditional bulk optics. The efforts to date, however, still face major performance limitations in tuning range, optical quality, and efficiency especially for non-mechanical actuation mechanisms. In this paper, we introduce an active metasurface platform combining phase tuning covering the full 2π range and diffraction-limited performance using an all-dielectric, low-loss architecture based on optical phase change materials (O-PCMs). We present a generic design principle enabling binary switching of metasurfaces between arbitrary phase profiles. We implement the approach to realize a high-performance varifocal metalens. The metalens is constructed using Ge2Sb2Se4Te1 (GSST), an O-PCM with a large refractive index contrast and unique broadband low-loss characteristics in both amorphous and crystalline states. The reconfigurable metalens features focusing efficiencies above 20% at both states for linearly polarized light and a record large switching contrast ratio (CR) close to 30 dB. We further validate aberration-free and multi-depth imaging using the metalens, which represents the first experimental demonstration of a non-mechanical active metalens with diffraction-limited performance.
The development of low-loss optical phase change materials (O-PCMs) promises to enable a plethora of nonvolatile integrated photonic applications. However, the relatively large optical constants change between different states of calls for a set of new design rationales. Here we report a non-perturbative design that enables low-loss device operation beyond the traditional figure-of-merit limit. The basic design rationale is to engineer the light propagation path through the OPCMs when it is in the low-loss amorphous state, and divert light away from the lossy crystalline state leveraging the large mode modification induced by the O-PCM phase transition. Following this approach, we demonstrate broadband photonic switches with significantly enhanced performances compared to current state-of-the-art.
We have already successfully employed the Generalized Dispersion Material (GDM) technique to include optical dispersion of different materials in the multiphysics time domain methods implementing the GDM model with various Auxiliary Differential Equation (ADE) and Recursive Convolution (RC) schemes. So far, we have demonstrated that the approach works efficiently to model the optical dispersion of metals, and to characterize the multivariate tunable dispersion of graphene. In this paper, we apply the GDM model to two emerging fields in the time-domain computational photonics.
In the first part, we further extend the GDM model to the Bi-Anisotropic (BA) case, where a full BA material tensor comes from homogenization procedure in the frequency domain. Conventional BA homogenization is a powerful multiscale technique for rapid prototyping and optimization of metasurfaces. With a new extension, the BA-GDM model characterizes artificial dispersion obtained from the mathematical equivalence of physical effects and enables the multiscale modeling of metasurfaces in the time domain.
Part 2 deals with new use of the GDM model in temperature-dependent time-domain simulations of phase change materials (PCMs). Optical PCMs, such as GST/GSST, are of critical utility in applications including, e.g., programmable metasurfaces, and nonvolatile memory. Typically, dispersions of amorphous and crystalline phases of PCMs are fitted separately in the frequency domain with a combination of the Tauc-Lorentz and Gauss terms, while Bruggeman’s mixing rule describes the transition states. Significantly advancing the-state-of-the-art, our GDM characterization describes dependency on temperature and crystallization levels explicitly and enables full wave modeling of PCMs in the time domain.
Optical phase change materials (O-PCMs) are a unique class of materials which exhibit extraordinarily large optical property change (e.g. refractive index change > 1) when undergoing a solid-state phase transition. Traditional O-PCMs suffer from large optical losses even in their dielectric states, which fundamentally limits the performance of optical devices based on the materials. To resolve the issue, we have recently demonstrated a new O-PCM Ge-Sb-Se-Te (GSST) with broadband low loss characteristics. In this talk, we will review an array of reconfigurable photonic devices enabled by the low-loss O-PCM, including nonvolatile waveguide switches with unprecedented low-loss and high-contrast performance, free-space light modulators, bi-stable reconfigurable metasurfaces, and transient couplers facilitating waferscale device probing and characterizations.
The dramatic optical property change of optical phase change materials (O-PCMs) between their amorphous and crystalline states potentially allows the realization of reconfigurable photonic devices with enhanced optical functionalities and low power consumption, such as reconfigurable optical components, optical switches and routers, and photonic memories. Conventional O-PCMs exhibit considerable optical losses, limiting their optical performance as well as application space. In this talk, we present the development of a new group of O-PCMs and their implementations in novel meta-optic devices. Ge-Sb-Se-Te (GSST), obtained by partially substituting Te with Se in traditional GST alloys, feature unprecedented broadband optical transparency covering the telecommunication bands to the LWIR. A drastic refractive index change between the amorphous and crystalline states of GSST is realized and the transition is non-volatile and reversible.
Optical metasurfaces consist of optically-thin, subwavelength meta-atom arrays which allow arbitrary manipulation of the wavefront of light. Capitalizing on the dramatically-enhanced optical performance of GSST, transparent and ultra-thin reconfigurable meta-optics in mid-infrared are demonstrated. In one example, GSST-based all-dielectric nano-antennae are used as the fundamental building blocks for meta-optic components. Tunable and switchable metasurface devices are developed, taking advantage of the materials phase changing properties.
The dramatic optical property change of optical phase change materials (O-PCMs) between their amorphous and crystalline states potentially allows the realization of reconfigurable photonics devices with low power consumption, such as optical switches and routers, reconfigurable meta-optics, displays, and photonic memories. However, conventional O-PCMs, such as VO2 and Ge2Sb2Te5, are inherently plagued by their excessive optical losses even in dielectric states, limiting their optical performance and hence application space. In this talk, we present the development of a new group of O-PCMs and their implementations in novel photonic devices. Ge-Sb-Se-Te (GSST), obtained by partially substituting Te with Se in traditional GST alloys, feature unprecedented broadband optical transparency covering the telecommunication bands to LWIR. Capitalizing on the dramatically-enhanced optical performance, novel non-volatile, reconfigurable on-chip photonics devices and architectures are demonstrated. GSST-integrated Si photonics based on the material innovation and novel “non-perturbative” designs exhibit significantly improved switching performance over state-of-the-art GST-based approaches. The technology is further scalable to realize non-blocking matrix switches with arbitrary network complexity, paving the path towards high performance reconfigurable photonics chips.
Optical phase change materials (O-PCMs) are a unique class of materials which exhibit extraordinarily large optical property change (e.g. refractive index change > 1) when undergoing a solid-state phase transition. These materials, exemplified by Mott insulators such as VO2 and chalcogenide compounds, have been exploited for a plethora of emerging applications including optical switching, photonic memories, reconfigurable metasurfaces, and non-volatile display. These traditional phase change materials, however, generally suffer from large optical losses even in their dielectric states, which fundamentally limits the performance of optical devices based on traditional O-PCMs. In this talk, we will discuss our progress in developing O-PCMs with unprecedented broadband low optical loss and their applications in novel photonic systems, such as high-contrast switches and routers towards a reconfigurable optical chip.
We demonstrate designs of dielectric-filled anti-reflection coated (ARC) two-dimensional (2D) metallic photonic
crystals (MPhCs) capable of omnidirectional, polarization insensitive, wavelength selective emission/absorption. Up to
26% improvement in hemispherically averaged emittance/absorptance below the cutoff wavelength is observed for
optimized hafnium oxide filled 2D tantalum (Ta) PhCs over the unfilled 2D Ta PhCs. The optimized designs possess
high hemispherically averaged emittance/absorptance of 0.86 at wavelengths below the cutoff wavelength and low
hemispherically averaged emittance/absorptance of 0.12 at wavelengths above the cutoff wavelength, which is extremely
promising for applications such as thermophotovoltaic energy conversion, solar absorption, and infrared spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.