SPIE Journal Paper | 9 July 2024
KEYWORDS: Cancer detection, Object detection, Education and training, Lung cancer, Tumor growth modeling, Lung, Data modeling, Computed tomography, Performance modeling, Deep learning
PurposeLung cancer is the second most common cancer and the leading cause of cancer death globally. Low dose computed tomography (LDCT) is the recommended imaging screening tool for the early detection of lung cancer. A fully automated computer-aided detection method for LDCT will greatly improve the existing clinical workflow. Most of the existing methods for lung detection are designed for high-dose CTs (HDCTs), and those methods cannot be directly applied to LDCTs due to domain shifts and inferior quality of LDCT images. In this work, we describe a semi-automated transfer learning-based approach for the early detection of lung nodules using LDCTs.ApproachIn this work, we developed an algorithm based on the object detection model, you only look once (YOLO) to detect lung nodules. The YOLO model was first trained on CTs, and the pre-trained weights were used as initial weights during the retraining of the model on LDCTs using a medical-to-medical transfer learning approach. The dataset for this study was from a screening trial consisting of LDCTs acquired from 50 biopsy-confirmed lung cancer patients obtained over 3 consecutive years (T1, T2, and T3). About 60 lung cancer patients’ HDCTs were obtained from a public dataset. The developed model was evaluated using a hold-out test set comprising 15 patient cases (93 slices with cancerous nodules) using precision, specificity, recall, and F1-score. The evaluation metrics were reported patient-wise on a per-year basis and averaged for 3 years. For comparative analysis, the proposed detection model was trained using pre-trained weights from the COCO dataset as the initial weights. A paired t-test and chi-squared test with an alpha value of 0.05 were used for statistical significance testing.ResultsThe results were reported by comparing the proposed model developed using HDCT pre-trained weights with COCO pre-trained weights. The former approach versus the latter approach obtained a precision of 0.982 versus 0.93 in detecting cancerous nodules, specificity of 0.923 versus 0.849 in identifying slices with no cancerous nodules, recall of 0.87 versus 0.886, and F1-score of 0.924 versus 0.903. As the nodule progressed, the former approach achieved a precision of 1, specificity of 0.92, and sensitivity of 0.930. The statistical analysis performed in the comparative study resulted in a p-value of 0.0054 for precision and a p-value of 0.00034 for specificity.ConclusionsIn this study, a semi-automated method was developed to detect lung nodules in LDCTs using HDCT pre-trained weights as the initial weights and retraining the model. Further, the results were compared by replacing HDCT pre-trained weights in the above approach with COCO pre-trained weights. The proposed method may identify early lung nodules during the screening program, reduce overdiagnosis and follow-ups due to misdiagnosis in LDCTs, start treatment options in the affected patients, and lower the mortality rate.