Luna Innovations has developed a prototype 8-channel fiber optic sensor system to demonstrate fiber optic sensor operation in flight environments. As an intial flight demonstration, long period grating (LPG) relative humidity sensors along with extrinsic Fabry-Perot interferometric (EFPI) pressure and temperature sensors were installed in an aging Delta 767-300ER jet. The fiber optic signal-conditioning system is a multi-purpose platform that can also be used to operate other types of fiber optic LPG and EFPI sensors, including strain gages, metal-ion corrosion sensors, and fiber Bragg grating (FBG) sensors. The system configuration and operation is described.
A primary concern with composite repair patches is the potential degradation of load transfer capabilities due to aging and environmental effects. The development of low profile, distributed, embeddable, real-time, optical fiber sensors capable of detecting the onset of patch delamination on repaired regions of the aircraft would eliminate a significant portion of the related maintenance costs as well as improve confidence levels in the technology. The presented sensing system is comprised of optical fiber long period gratings (LPGs) for chemical measurement and Bragg gratings for strain measurement. The sensors can be multiplexed together to monitor the structural health of the patch system and status of any remaining damage in the parent structure. The LPG sensors operate based on specially designed sensing coatings which cause a measurable change in the refractive index 'seen' by the LPG in the presence of target molecules. In this configuration, LPGs can be used to detect moisture infiltration and other chemical changes within a localized environment. Complementary to the long period grating, Bragg grating strain sensors can be fabricated on the same optical fiber to measure load transfer and composite delamination in patches used to repair cracks that occur in aging aircraft.
A novel system incorporating optical fiber long-period grating (LPG)-based sensors for rapid detection of biological targets is presented to address the current need for highly responsive, inexpensive, instrumentation for in-situ subsurface bioremediation technologies. With the appropriate configuration, the LPG sensor is able to measure key environmental parameters. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings to the fiber surface, specific binding of molecules can be accomplished using swellable polymers or ligand-based affinity coatings. Advantages of the sensors have are that they are highly responsive, low profile, and can be serially multiplexed within a single-ended probe-like arrangement. This arrangement can be utilized either locally for site characterization or as a distributed sensor to map contaminant levels at multiple depths over a large area. The performance advantages make optical fiber sensors ideal for detection of environmental targets in drinking water, groundwater, soil, and other complex samples. This paper presents recent long-period grating-based sensor results that demonstrate the potential for bioremediation as well as a variety of other chemical and biological sensing applications.
A novel system incorporating optical fiber extrinsic Fabry- Perot interferometric (EFPI)-based sensors for rapid detection of biological targets is presented. With the appropriate configuration, the EFPI senor is able to measure key environmental parameters by monitoring the interferometric fringes resulting from an optical path differences of reflected signals. The optical fiber EFPI sensor has been demonstrated for strain, pressure, and temperature measurements and can be readily modified for refractive index measurements by allowing solutions to flow into an open cavity. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings containing ligands within this cavity, specific binding of target molecules can be accomplished. As target molecules bind to the coating, there is an increased density within the film, causing a measurable refractive index change that correlates to the concentration of detected target molecules. This sensor platform offers enhanced sensing capabilities for clinical diagnostics, pharmaceutical screening, environmental monitoring, food pathogen detection, biological warfare agent detection, and industrial bioprocessing. Promising applications also exist for process monitoring within the food/beverage, petroleum, and chemical industry.
Optical fiber sensors are a novel and ideal approach for making chemical and physical measurements in a variety of harsh environments. They do not corrode, are resistant to most chemicals, immune to electromagnetic interference, light weight, inherently small and have a flexible geometry. This paper presents recent test results using optical fiber long-period grating (LPG) sensors to monitor corrosion precursors and by-products. With the appropriate coating, the LPG sensor can be designed to identify a variety of environmental target molecules, such as moisture, pH, sulfates, chlorates, nitrates and metal-ions in otherwise inaccessible regions of metallic structures. Detection of these chemicals can be used to determine if the environment within a particular area of an airplane or infrastructure is becoming conducive to corrosion or whether the corrosion process is active. The LPG sensors offer a clear advantage over similar electrochemical sensors since they can be rendered immune to temperature cross-sensitivity, multiplexed along a single fiber, and can be demodulated using a simple, low-cost spectrum analyzer. By coating the LPG sensor with specially designed affinity coatings that selectively absorb target molecules, selective, real-time monitoring of environmental conditions is possible. This sensing platform shows great promise for corrosion by- product detection in pipe networks, civil infrastructure, process control, and petroleum production operations and can be applied as biological sensors for in-vitro detection of pathogens, and chemical sensors for environmental and industrial process monitoring.
Optical fiber sensors are used to monitor strain at elevated temperatures on modern high- temperature alloys during cyclic loading. Presented are the application and operation of metal coated silica-based fibers and extrinsic Fabry-Perot strain sensors monitoring fatigue tests at high-temperatures. The resultant strains from varying fatigue cycles and temperatures, from ambient to 2070 degrees F (1132 degrees Celsius), were monitored with surface-attached, short gage length, low finesse Fabry-Perot interferometric optical fiber sensor elements. The results demonstrate that the fiber optic strain sensors are able to withstand extreme temperatures, while maintaining a high level of performance. The capabilities of the fiber optic strain sensors make it possible to monitor material property changes during high- temperature fatigue loading.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.