KEYWORDS: Signal to noise ratio, Infrared radiation, Signal detection, Interference (communication), Oscillators, Signal processing, Phase measurement, Sensors, Modulation, Reflectivity
Measurement of infrared radiation with low intensity in level of 10−6 W / cm2 is difficult. Because both background and the components used in the measurement system will generate infrared radiation, which results in a low signal-to-noise ratio (SNR). Except of using photodetector with high sensitivity, weak signal processing method is crucial. In this paper an infrared radiation intensity measurement setup based on intercomparison method is introduced. A reflective chopper is used to modulate the detected infrared radiation. By using a MCT Detector with Dewar the infrared signal is transferred to electric signal. To process the weak modulated signal with strong noise an extended Duffing oscillator is introduced. Both amplitude and phase of the modulation signal with known frequency is obtained by step-time-delay technique (equivalent to phase shifting in frequency-domain). The measurement error can be maintained below 16.1% even when the SNR is as low as -67 dB. The corresponding received infrared radiation power is only 1.05×10-9 W. The proposed signal processing method shows superior ability and great potential applications compared with commonly used method, such as lock-in amplification.
Laser micro-Doppler information generated by characteristic motion such as target rotation or vibration is a fingerprintlike feature of a target such as a vehicle/pedestrian. By combining with the Doppler information, it can be used for the classification and accurate identification of traffic participants. Meanwhile, optical sensor based on such technology is easy to integrate with intelligent driving platform or intelligent traffic monitoring and control platform. This paper proposes a laser Doppler and micro-Doppler composite signal simulation scheme based on vehicle vibration characteristics. Laser Doppler and micro-Doppler composite signals in a platform state simulated by a horn and a onedimensional mobile platform, and a reformed smooth pseudo-Wigner-Ville distribution analysis program is prepared for analysis. Based on this, vibration and motion information are extracted, the laser echo signals are constructed effectively, and physical simulation for composite signal of optical sensor are able to perform.
In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.
The first and most essential capability a visible scene projection system must have is low background and high contrast during dynamic simulation. A complex visible scene projection system was developed to meet the above requirements. The complex visible scene projection system mainly consists of the optical fiber subsystem, LCD (Liquid Crystal Display) subsystem, multiple focal plane coupler and the collimation objective. The design and build and details of the system characterization of a prototype complex visible scene projector were summarized.
In the process of high-resolution astronomical observation and space optical mapping, the wavefront aberrations caused by atmosphere turbulence effect lead to reduced resolution of optical imaging sensor. Firstly, on the base of influence of atmosphere turbulence effect for the optical observation system, this paper investigates and analyses the development and technical characteristics of deformable mirror, which is the key device of optical wavefront control technology. In this part, the paper describes the basic principles of wavefront control and measurement using the current production line of deformable mirror, including micro-electromechanical systems (MEMS) deformable mirror which is one of the most promising technology for wavefront modulation and Shack-Hartmann wavefront sensors. Secondly, a new method based on the technology of optical wavefront control and the data of optical path difference (OPD) for simulating the effect of optical transmission induced by turbulence is presented in this paper. The modeling and characteristics of atmosphere turbulence effect applied for optical imagery detector of astronomical observation and space optical mapping has been obtained. Finally, based on the theory model of atmosphere turbulence effects and digital simulation results, a preliminary experiment was done and the results verify the feasibility of the new method. The OPD data corresponding to optical propagation effect through turbulent atmosphere can be achieved by the calculation based on the method of ray-tracing and principle of physical optics. It is a common practice to decompose aberrated wavefronts in series over the Zernike polynomials. These data will be applied to the drive and control of the deformable mirror. This kind of simulation method can be applied to simulate the optical distortions effect, such as the dithering and excursion of light spot, in the space based earth observation with the influence of turbulent atmosphere. With the help of the optical wavefront control technology, the optical sensor and ability of space optical detection system for correcting the target image blurred by turbulence of atmosphere can be tested and evaluated in the laboratory.
The multitarget compounding technique is key in an infrared hardware-in-the-loop simulation system. In this study, the beam-broadening theory and carefully designed experiments are presented to analyze a multitarget compounding system based on a dimpled mirror. By paraxial approximation of geometrical optics, the expression of broadened beamwidth of a dimpled-mirror two-mirror three-reflection concentric system was obtained as the function of system parameters. A multitarget compounding setup was designed and experiments were performed. Excellent matching results were achieved between the beamwidth theory and the experiments. Experimental results demonstrated that the beam-broadening theory is creditable and suitable to design the multitarget compounding system. The theory and experiments are beneficial to the future development and implementation of multitarget compounding technique.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.