Metal halide perovskite materials have rapidly advanced in the perovskite solar cells and light-emitting diodes due to their superior optoelectronic properties. The structure of perovskite optoelectronic devices includes the perovskite active layer, electron transport layer, and hole transport layer. This indicates that the optimization process unfolds as a complex interplay between intricate chemical crystallization processes and sophisticated physical mechanisms. Traditional research in perovskite optoelectronics has mainly depended on trial-and-error experimentation, a less efficient approach. Recently, the emergence of machine learning (ML) has drastically streamlined the optimization process. Due to its powerful data processing capabilities, ML has significant advantages in uncovering potential patterns and making predictions. More importantly, ML can reveal underlying patterns in data and elucidate complex device mechanisms, playing a pivotal role in enhancing device performance. We present the latest advancements in applying ML to perovskite optoelectronic devices, covering perovskite active layers, transport layers, interface engineering, and mechanisms. In addition, it offers a prospective outlook on future developments. We believe that the deep integration of ML will significantly expedite the comprehensive enhancement of perovskite optoelectronic device performance.
The Nobel Prize in Chemistry 2023 was awarded to Moungi G. Bawendi, Alexei I. Ekimov, and Louis E. Brus for “the discovery and synthesis of quantum dots (QDs).” Here we review the history of QDs, bridge the connection between colloidal QDs and epitaxial QDs, revisit the milestones of their applications in optoelectronics, and provide insights into the future advancements of QDs.
Solution-processed light-emitting diodes (LEDs) are attractive for applications in low-cost, large-area lighting sources and displays. Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with intriguing optoelectronic properties, such as high photoluminescence yield, good charge mobility and excellent color purity. In this talk, I will present our effort to boost the efficiency of perovskite LEDs to a high level which is comparable to organic LEDs. More importantly, organic LEDs are difficult to maintain high efficiency at high current densities due to their excitonic nature and low charge mobilities. Low temperature solution-processed perovskite LEDs demonstrate remarkably high efficiency at high current densities, suggesting unique potential to achieve large size planar LEDs with high efficiency at high brightness.
Proceedings Volume Editor (3)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.