Spectroscopic critical dimension (SCDTM) metrology on line gratings has previously been shown to be a sensitive and useful technique for monitoring lithographic focus and exposure conditions. Line end shortening (LES) effects are sensitive to focus and potentially more sensitive to focus variation than side wall angle or other profile parameters of line gratings. Rectangular line segment structures that exhibit line-end shortening behavior are arranged in a rectangular two-dimensional (2D) array to provide a scatterometry signal sensitive to the profile of the thousands of line ends in the measurement beam spot. Spectroscopic ellipsometry (SE)-based scatterometry measurements were carried out on 2D array targets of rectangular features exposed in a focus-exposure matrix (FEM). The focus and exposure sensitivities of multiple shape parameters were found to be good and uniquely separable. In addition, the side wall angle of the line ends was found to be nearly linearly dependent on focus and provide necessary focus direction information. Focus and exposure can be determined from SCD measurements by applying a model generated to describe the focus-exposure behavior of multiple shape parameters using KLA Tencor's KT Analyzer software. Several different models based on different combinations of shape parameters were evaluated. Focus measurement precision of 3nm 3σ was obtained, which will be useful for lithography processes with tight depth of focus.
In this paper we describe, from the user's point of view, how Inverse Lithography Technology (ILT) differs from Optical Proximity Correction (OPC). We discuss some specifics of ILT at chip-scale. We show simulation and experimental results from 90nm and 65nm semiconductor nodes, comparing results from ILT-generated masks and OPC-generated masks for real-life layouts, in a production environment. In addition, we discuss issues related to complexity and manufacturability of ILT-generated masks.
In this paper we describe, from the user's point of view, how Inverse Lithography Technology (ILT) differs from Optical Proximity Correction (OPC). We show simulation and experimental results from 90nm and 65nm semiconductor nodes, comparing ILT-generated masks and OPC-generated masks for real-life layouts, in a production environment. In addition, we discuss issues related to complexity and manufacturability of ILT-generated masks.
Obtaining good post-etching CD uniformity is getting more and more important in advanced processes such as 90 nm, 65 nm, and even 45nm for 300 mm wafers. But process noise greatly impacts the CD uniformity, especially etching bias and metrology noise. To achieve a CD uniformity of below 3 nm for 300 mm post-etch wafers, the metrology noise and process noise must be reduced and compensated for. In this paper, we demonstrate spectroscopic ellipsometry CD with the advantages of high stability and high accuracy to get CD information precisely, and high sensitivity to monitor PEB temperature and exposure energy fine variation in order to compensate for the etching bias.
This study focuses on the feasibility of minimizing the CD uniformity of post-etch wafers by ADI CD compensation for a 300 mm leading-edge fab. Because the CD uniformity of after-development inspection (ADI) wafers from a leading-edge lithographic tool could be in the range of only 3 nm, it is very challenging to reveal the true CD signature of an ADI wafer using a metrology tool. A spectroscopic ellipsometry based metrology tool, SpectraCD, was used in this study. In order to make sure the CD signatures reported by SpectraCD reveal the true behavior of a lithographic tool, the well-published Total Test Repeatability (TTR) test was adopted. In comparison with 3 nm CD uniformity, a 0.2 nm TTR is accurate enough for this study. In addition, from more than 100 wafers produced within a week, the CD signature of ADI wafers is very stable on wafer-to-wafer and lot-to-lot bases. Basically, all the ADI wafers produced from a single post-exposure-bake plate of an exposure tool within a week show very similar CD signatures. The feasibility of reaching a CD uniformity of 3 nm for post-etch wafers will be demonstrated in this study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.