During the last years, three-dimensional X-ray imaging has become a well-established imaging modality, setting the golden standard for spatial resolution in three-dimensional X-ray imaging. Firstly introduced on a motorized C-arm system, it gained benefit from the high spatial resolution of the image intensifier. Using cone-beam reconstruction, it provided fast access to truly three-dimensional imaging with isotropic voxel dimensions. However, the non-rigid mechanics and the image distortion in the image intensifier required dedicated calibration processes and obligated the developers to use the most stable and reliable system in the C-arm device family. The need for system calibration also required the system to be able to reproducibly adjust the C-arm to the pre-calibrated positions, which seemed only possible with the motorized movement of a high-end system. On mobile, non-motorized C-arm systems, which are often used for guiding surgical procedures, however, 3D application has not been feasible due to the non-reproducibility of the mechanical movement. In this paper, first results regarding the feasibility of this approach are presented. The data were acquired on a Philips BV 26 surgical C-arm. This device is fully movable. The C arc is adjusted manually.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.