KEYWORDS: Optical amplifiers, Signal attenuation, Data modeling, Signal to noise ratio, Power consumption, Quadrature amplitude modulation, Design and modelling, Transceivers, Power supplies
Undersea submarine cable transmission systems are characterized by fixed and limited electrical power supplies. Electrical power is provided by a DC voltage applied across the cable from power feed equipment (PFE) located at the terminal ends and is used to power all optical amplifiers throughout the entire link which may be many thousands of kilometers. Because of the limited nature of electrical power, the concept of power efficiency is very important. In fact, power efficiency drives the recent design trend in undersea systems to spatial division multiplexing (SDM), increasing fiber counts in submarine cables. We examine here efficiency maximization via system modeling primarily with respect to the optimal generalized signal-to-noise ratio (GSNR). We explore dependences on system aspects such as capacity metric, link length, span loss, and fiber attenuation. We compare three different measures of efficiency based on total amplifier optical output power, total pump power, and overall cable capacity predicted by application of a pump sharing model and the resulting electrical-to-optical conversion efficiency levels predicted. Several capacity metrics are also studied and compared ranging from the theoretical Shannon capacity limit to a fitting of a real-time transponder. We evaluate optimal link GSNR values that maximize the various efficiency definitions as a function of link length, as well as optimal span loss values for a fixed link distance.
KEYWORDS: Digital signal processing, Filtering (signal processing), Digital filtering, Transceivers, Receivers, Polarization, Electronic filtering, Transmitters, Signal detection, Optical fibers
We investigate the computational complexity of adaptive equalization in coherent receiver digital signa l processing (DSP) for data center interconnect (DCI) systems. We propose modified DSP procedures with a first-stage static filter and a second-stage short-length adaptive equalizer. Typically, coherent DSP requires 11 and 17 adaptive equalizer taps respectively for 60 Gbaud and 80 Gbaud signals in the 100 km fiber link. The modified DSP procedures combine matched filter, chromatic dispersion compensation (CDC), and non-ideal channel effects and polarization effect s in to a static filter. Since polarization demultiplexing is partially realized by the static filter, the size of the following adaptive equalizer is substantially reduced. Results showed 35% - 87% overall complexity reduction in adaptive equalization a s compared with the reference DSP, depending on link length and symbol rate.
KEYWORDS: Transceivers, Signal attenuation, Digital signal processing, Signal to noise ratio, Digital filtering, Monte Carlo methods, Data centers, Single mode fibers, Quadrature amplitude modulation, Wavelength division multiplexing
Exponential growth of Internet traffic demands data center interconnect (DCI) systems to provide 400 Gb/s and higher per wavelength capacity under tight power consumption limitations for optical transceivers. We investigate the potential advantages of applying ultra-low loss and low dispersion fibers in DCI systems. Link optical signal to noise ratio (OSNR) and capacity analysis shows that ultra-low loss fiber (0.16 dB/km) provides significantly higher data capacity as compared with regular single-mode fiber (0.2 dB/km) for 80 km long DCI links. Also, the lower fiber attenuation reduces the required transceiver output power by 10 dB to achieve the same data capacity for 100 km DCI links. This implies substantial simplification in optical transceiver design. Digital chromatic dispersion compensation (CDC) is one of the major power consumers in optical transceivers. Our analysis shows that low dispersion fiber (4 ps/(nm·km)) reduces CDC computational complexity by 20% to 71% for different DCI link lengths versus regular single-mode fiber, indicating significant reduction in power consumption. Moreover, employing the CDC capability of the built-in adaptive filter in coherent receiver digital signal processing (DSP), the digital CDC unit could be completely removed using low dispersion fibers in DCI systems. Finally, we performed Monte-Carlo simulations of DCI links with different fiber types and confirmed the benefits of ultra-low loss and low dispersion fibers.
We introduce a new technique for obtaining the frequency offset introduced at the receiver due to the heterodyning of the transmitter laser and the local oscillator. This technique is needed for multi-subcarrier systems, as the offset must be removed without knowledge of the modulation format, making well-known algorithms that correct using it impractical. By detecting the spectral edges for the transmitted and received signals, it is possible to get a coarse estimate of the intermediate frequency by finding the difference between these two values. We then use this approximation as a starting point to fine search for the true value, by taking a window of possible values around the approximation. By taking the cross-correlation between the received data and a subset of the transmitted data for the subcarriers, we can verify whether the correct value is chosen, and if not, move on to the next estimate.
Data traffic demands continue to increase worldwide, driving requirements for higher spectral efficiency systems and higher individual channel capacities. To enable terrestrial transmission systems to keep up with demand, the ITU recently adopted the G.654.E standard for optical fiber with larger effective area for terrestrial use. To keep macrobend loss performance the same as for conventional G.652 fiber, the cable cutoff wavelength specification for the new fiber class was increased to the lower edge of the C-band. We examine here several aspects of G.654.E fiber in terrestrial systems including modeled and experimentally measured transmission reach, the use of Raman amplification with pump wavelengths below cable cutoff, and the transmission of optical supervisory channels (OSC) at wavelengths below cable cutoff. We demonstrate significant transmission reach increases for 200 Gb/s PM-16QAM channels of at least 55% compared to standard single-mode fiber in a re-circulating loop experimental configuration. Addressing the practical questions of OSC and Raman pumps propagating below cable cutoff, we demonstrate experimentally and through extensive modeling that negligible impact is expected and observed in both cases.
There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.
Steadily increasing data traffic gives rise to increasing capacity requirements in optical communication networks. It is
well understood that systems with higher symbol rates and/or multi-level modulation formats generally demand higher
optical signal-to-noise ratio (OSNR) at the receiver to achieve acceptable system performance. In terms of the optical
fiber medium, higher OSNR can be attained by lowering fiber loss and reducing fiber nonlinearity. We review several
recent experimental investigations of 112 Gb/s PM-QPSK transmission with reach-length results enabled by the use of
optical fibers with ultra-low loss and very large effective area.
KEYWORDS: Phase modulation, Signal processing, Optical amplifiers, Polarization, Receivers, Digital filtering, Digital signal processing, Telecommunications, Multiplexing, Optical filters
The performance of polarization multiplexed, quadrature phase shift keying (PM QPSK) and polarization multiplexed
16-ary quadrature amplitude modulation (PM 16-QAM) is considered with an emphasis on the signal processing
algorithms that compensate transmission impairments and implement key receiver functions.
We show through numerical simulation of 10.7-Gbits/s dense wavelength-division multiplexed (DWDM) duobinary transmission over 800 km of nonzero-dispersion-shifted fiber that uncompensated dispersion can introduce significant departures from Gaussian statistics in the receiver current.
In this paper, we experimentally study the performance of a large effective area non-zero dispersion shifted fiber over
distances characteristic of metropolitan and provincial area networks, with a wide variety of commonly used transmitter
types. The experiments are performed without dispersion compensation to simulate current network designs. The
transmitters tested include externally modulated lasers, directly modulated lasers, lasers with integrated electroabsorption
modulators, bit rates of 10 Gb/s and 2.5 Gb/s, and wavelengths from 1310 nm to 1610 nm. We find that the
non-zero dispersion shifted fiber compares favorably with standard single mode fiber for many transmitters, offering
reach advantages of 3-4 times in the 1550 nm band. Deployment of such a low dispersion fiber in metro/provincial
networks may allow the use of some transmitters currently not practical, such as 10 Gb/s directly modulated lasers in the
S-, C-, and L-bands. In general, it provides comparable or superior performance with today’s current transmitters, and
allows the possibility for future upgrades to higher bit rates and longer link lengths that may not be feasible with
standard single mode fiber.
The design of optical communication networks with network switching elements operating in the optical domain requires careful system analysis and potentially stringent component requirements. We consider here network elements such as transparent optical cross-connects that demultiplex WDM signals, optically switch individual channels, and then multiplex the wavelengths together again before transmission into the next span. Network element optical impairments that can degrade signal quality are in-band (same wavelength) crosstalk, out-of-band crosstalk, and signal distortion from filter concatenation effects. These impairments can limit the transmission distance of a signal before regeneration is required. We examine the trade-offs between crosstalk and filter distortion in the context of the optical filters used in the optical multiplexers and demultiplexers in the network elements. We demonstrate the balance that must be struck between these impairment types in the design of the filters and network system. We study a 10 Gb/s network with 50 GHz channel spacing, examining both NRZ and RZ modulation formats. In both cases, we find optimal filter bandwidths that minimize the total signal degradation measured in terms of Q penalty. The total penalty suffered by RZ signals is higher than that of NRZ signals and must be considered when estimating system reach.
KEYWORDS: Holograms, Data storage, Diffraction, Holography, Glasses, Binary data, Information operations, Polymers, Optical storage, Signal to noise ratio
Photochromic films made from bacteriorhodopsin (BR) possess many desirable characteristics for a candidate holographic optical data storage medium. These properties include optical erasability, high spatial resolution, adequate diffraction efficiency, flexible film formats, durability, an optimal recording/readout wavelength of about 680 - 690 nm, and potentially inexpensive cost. In this paper, we experimentally study the raw bit-error-rate (BER) achievable with BR films made from the genetic variant known as D85N. Experimental data is collected for digital bit patterns fabricated as chrome-on- glass masks, at two different spatial resolutions. The results show that films fabricated from D85N have good potential for use in holographic data storage systems, but that further effort must be devoted to the film fabrication process in order to minimize optical nonuniformity and scattering losses.
Photoinduced anisotropy in terms of dichroism and birefringence was investigated in a series of experiments. Measurements and comparisons were made using samples of wild type bacteriorhodopsin and its mutations 3,4-dehydro BR and 4-keto BR.
Gaussian-beam propagation in the bio-optical material bacteriorhodopsin is studied with the consideration of the material's intensity-dependent absorption and refractive index modulation. The beam focusing size, focusing position and their dependence on the incident beam parameters are simulated.
The power spectral density function (PSD) is being employed to specify the surface finish and transmitted wavefront in the mid-spatial frequency regime for laser beam optics of the National Ignition Facility (NIF). The instrument used to measure the PSD is a phase measuring Fizeau interferometer. The phase map produced by the interferometer is digitally processed to create the PSD. Before one can use the PSD information, it is necessary to evaluate the fidelity of the interferometer spatial frequency response. Specifically, one must measure the overall transfer function of the instrument. To accomplish this, we perform a two-step 'calibration' process. We first measure a known precision phase object with the interferometer and then compare the measured PSD to an ideal numerical simulation which represents the theoretical PSD. The square root of the ratio of the measured function to the simulation is defined as the transfer function of the instrument. We present experimental results for both reflective and transmissive test objects, including effects such as the test object orientation and longitudinal location in the interferometer cavity. We also evaluate the accuracy levels obtained using different test objects.
The problem of designing ternary phase and amplitude filters (TPAF5) that reduce the probability of image misclassification for a two-class image set is studied. The Fisher ratio is used as a measure of the correct classification rate, and an attempt is made to maximize this quantity in the filter designs. Given the nonanalytical nature of the design problem, a simulated annealing optimization technique is employed. Computer simulation results are presented for several cases including single in-class and out-of-class image sets and multiple image sets corresponding to the design of synthetic discriminant function filters. Significant improvements are found in expected rates of correct classification in comparison to binary phase-only filters and other TPAF designs. Approaches to accelerate the filter design process are also discussed.
Much of the filter design work that has been performed to date for filter SLMs with both constrained and unconstrained modulation characteristics has been concerned with optimizing the design for certain performance criteria associated only with the correlation function of the target image. However, in most likely application scenarios there will be multiple objects that may populate the field of view, and the most important correlation performance criterion is ultimately the probability of correct classification of a given object as either belonging to the in-class set or the out-of-class set. In this work, we study the problem of designing ternary phase and amplitude filters (TPAFs) that reduce the probability of image misclassification. We use the Fisher ratio as a measure of the correct classification rate, and we attempt to maximize this quantity in our filter designs. Given the nonanalytical nature of the design problem, we employ a simulated annealing optimization technique. We present computer simulation results for several cases including single in-class and out-of-class image sets and multiple image sets corresponding to the design of synthetic discriminant function filters. We find significant reductions in expected rates of classification error in comparison to BPOFs and other TPAF designs.
We investigate the optimal designs of binary phase and amplitude filters (BPAF5) for the key correlation metrics of peak intensity, peak-to-correlation energy, SNR, and discrimination. These filters may be implemented on binary polarization-rotating spatial light modulators. We present simulation results comparing performance to conventional binary phase-only filters (BPOFs) and illustrating trade-offs between the different performance criteria in terms of the filter design parameter. We also extend the generalization to three-level phase and amplitude filters with a nonzero region of support and demonstrate that optimal three-level BPAFs can provide clearly superior performance to optimal three-level BPOFs.
We compare computer simulation results of optical correlator performance using synthetic discriminantfunction filters encoded in binary phase versus ternary phase and amplitude for distortion-tolerant pattern recognition. We examine two different ternary filter formulations designed to enhance discrimination and SNR. The simulated situation is for very similar in-class and out-of-class images, which makes discrimination between the two sets difficult. The ultimate performance criterion of interest is the probability of correct identification in the presence of image noise, which we address as a function ofthe range of distortion tolerance offered by the filters. We find that the ternary filters offer improved system performance and greater possible distortion range in comparison to the binary filters, and in particular that the ternary filters with a region of support designed to enhance SNR have the best performance for the image sets studied here. Knowledge of the out-of-class images allows the filter designer to create filters that maximize the probability of correct identification. We present numerical examples of this performance figure for two sets of training images.
With the growing interest in using binary phase only filters (BPOF) in optical correlators that are implemented on magnetooptic spatial light modulators, an understanding of the effect of errors in system alignment and optical components is critical in obtaining optimal system performance. We present simulations of optical correlator performance degradation in the presence of eight errors. We break these eight errors into three groups: 1) alignment errors, 2) errors due to a combination of component imperfections and alignment errors, and 3) errors which result solely from non-ideal components. Under the first group, we simulate errors in the distance from the object to the first principle plane of the transform lens, the distance from the second principle plane of the transform lens to the filter plane, and rotational misalignment of the input mask with the filter mask. Next we consider errors which result from a combination of alignment and component imperfections. These include errors in the transform lens, the phase compensation lens, and the inverse Fourier transform lens. Lastly we have the component errors resulting from the choice of spatial light modulator. These include contrast error and phase errors caused by the non-uniform flatness of the masks. The effects of each individual error are discussed, and the result of combining all eight errors under assumptions of reasonable tolerances and system parameters is also presented. Conclusions are drawn as to which tolerances are most critical for optimal system performance.
Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic SLM, it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the PCE metric), SNR, and discrimination between in-class and out-of- class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.
Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.
We address the problem of optical phase errors in an optical correlator introduced by the input and filter plane spatial light modulators. Specifically, we study a laboratory correlator with magnetooptic spatial light modulator (MOSLM) devices. We measure and characterize the phase errors, analyze their effects on the correlation process, and discuss a means of correction through a design modification of the binary phase-only optical filter function. The phase correction technique is found to produce correlation results close to those of an error-free correlator.
Pattern recognition invariant to image rotations of up to 75 deg, using a single filter, has been demonstrated for binary synthetic discriminant function (BSDF) optical filters, suggesting their use in directed graph-arranged data bases which can be rapidly traversed by means of a filter-plane programmable spatial light modulator (SLM). The filter data base is arranged as a tree structure in which the root node filters are invariant to over 60 deg rotation, while the leaves are 5-deg invariant. Results are presented from experiments with BSDFs designed to recognize in-plane-rotated views of a Space Shuttle Orbiter. Using a magnetooptic SLM that is driven at 350 Hz in the filter plane, orientation identifications requiring less than 30 msec have been achieved after sequencing through only 10 BSDFs.
A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.
An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.
A holographic implementation for neural networks is proposed and demonstrated as an alternative to the optical matrix-vector multiplier architecture. In comparison, the holographic architecture makes more efficient use of the system space-bandwidth product for certain types of neural networks. The principal network component is a thermoplastic hologram, used to provide both interconnection weights and beam redirection. Given the updatable nature of this type of hologram, adaptivity or network learning is possible in the optical system. Two networks with fixed weights are experimentally implemented and verified, and for one of these examples we demonstrate the advantage of the holographic implementation with respect to the matrix-vector processor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.