Nitrogen Vacancy (NV) centers in diamond have emerged over the past few years as well-controlled quantum systems, with promising applications ranging from quantum information science to magnetic sensing. In this talk, I will describe new techniques for NV sensing – quantifying radical concentration and high-bandwidth compressed sensing.
First, I will present our diamond magnetic microscope, enabling high-sensitivity and high-resolution magnetic sensing. I will demonstrate a novel technique we developed to characterize radical concentrations through their effect on the NVs (in collaboration with Uri Banin’s group).
Then I will present a technique based on spectral compressed sensing, allowing high-bandwidth and large dynamic range magnetic sensing using NVs. We demonstrate the advantages of this approach and extend common compressed sensing schemes to practically “infinite resolution” in the frequency domain, further enhancing the the capabilities of our scheme.
We show that Doppler shifts are fundamental in gyroscopes. The implication is that it is then possible to perform frequency estimation rather than phase estimation in a passive gyroscope. By utilizing the ultra-steep gain feature of a liquid crystal light valve, we were able to show that we could beat the standard quantum limit of phase estimation by two orders of magnitude compared to a standard interferometer of the same size.
We propose `digital cloaking' as a method for practical cloaking, where space, angle, spectrum, and phase are discretized. At the sacrifice of spatial resolution, a good approximation to an `ideal' cloak can be achieved- a cloak that is omnidirectional, broadband, operational for the visible spectrum, three- dimensional (3D), and phase-matching for the light field, among other attributes. Experimentally, we demonstrate a two-dimensional (2D), planar, ray optics version of our proposed digital cloak by using lenticular lenses, similar to `integral imaging' for 3D displays. With the continuing improvement in commercial digital technology, the resolution limitations of a digital cloak will be minimized, and a wearable cloak can be developed in the future.
Here, we discuss the development of a new inequality in information theory; a Fano inequality suitable for continuous variables. With this inequality, we show how one can demonstrate Einstein-Podolsky-Rosen (EPR) steering in the position-momentum statistics of entangled photon pairs from spontaneous parametric down-conversion (SPDC). More importantly, we show how with sufficiently strong position and momentum correlations, we can demonstrate continuous-variable EPR steering without having to assume the photo-detectors have access to the entire joint intensity distribution. Moreover, we demonstrate this experimentally with the position and momentum statistics of entangled photon pairs in SPDC.
Measurements on quantum systems are always constrained by uncertainty relations. For traditional, projective measurements, uncertainty relations correspond to resolution limitations; a detector's position resolution is increased at the cost of its momentum resolution and vice-versa. However, many experiments in quantum measurement are now exploring non- or partially-projective measurements. For these techniques, measurement disturbance need not manifest as a blurring in the complementary domain. Here, we describe a technique for complementary imaging | obtaining sharp position and momentum distributions of a transverse optical field with a single set of measurements. Our technique consists of random, partially-projective filtering in position followed by projective measurements in momentum. The partial-projections extract information about position at the cost of injecting a small amount of noise into the momentum distribution, which can still be directly imaged. The position distribution is recovered via compressive sensing.
Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle (`paraxial') limit.
Using coherence enhanced nonlinear optics we observe absorptive
switching in hot Rubidium atoms. Electromagnetically induced
transparency helps create a larger absorptive Kerr nonlinearity
enabling strong absorptive switching with laser intensities of
10 microwatts per square centimeter. Switching is interpreted in terms of optical pumping into and out of the "dark" state.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.