In the GRAVITY+ project, GRAVITY is presently undergoing a series of upgrades to enhance its performance, add wide field capability and thereby expand its sky coverage. Some aspects of these improvements have already been implemented and commissioned by the end of 2021, making them accessible to the community. The augmentation of sky coverage involves increasing the maximum angular separation between the celestial science object and the fringe tracking object from the previous 2 arcseconds (limited by the field of view of the VLTI) to 20 – 30 arcseconds (constrained by atmospheric conditions during observation). Phase 1 of GRAVITY+ Wide utilizes the earlier PRIMA Differential Delay Lines to compensate for the optical path length variation between the science and fringe tracking beams throughout an observation. In phase 2, we are upgrading the existing beam compressors (BC) to integrate optical path length difference compensation directly into the BC. This modification eliminates five optical reflections per beam, thereby enhancing the optical throughput of the VLTI–GRAVITY system and the bandwidth of the vibrational control. We will present the implementation of phase 2 and share preliminary results from our testing activities for GRAVITY+ Wide.
The GRAVITY instrument has transformed the field of near-infrared interferometry and is redefining the limits of ground-based observations. In Galactic Center observations, this is shown by routinely achieving below 50 μas uncertainty on astrometric measurements within a 5-minute exposure and detecting stars fainter than 19th magnitude. Nevertheless, systematic effects are still limiting the instrument's performance. In this talk, I will introduce two observing modes to overcome these limitations: Pupil modulation to improve the astrometry and metrology attenuation to overcome SNR limitations. I will detail these two modes and show how significant the improvements are on examples of on-sky data.
We present the Wavefront Sensor units of the Gravity Plus Adaptive Optics (GPAO) system, which will equip all 8m class telescopes of the VLTI and is an instrumental part of the GRAVITY+ project. It includes two modules for each Wavefront Sensor unit: a Natural Guide Star sensor with high-order 40×40 Shack-Hartmann and a Laser Guide Star 30×30 sensor. The state-of-the-art AO correction will considerably improve the performance for interferometry, in particular high-contrast observations for NGS observations and all-sky coverage with LGS, which will be implemented for the first time on VLTI instruments. In the following, we give an overview of the Wavefront Sensor units system after completion of their integration and characterization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.