To reconstruct three-dimensional (3D) information perfectly, phase and amplitude of incident waves must be controlled simultaneously. However, since the conventional spatial light modulation techniques could control only one component of phase or amplitude, it has very low quality of reconstructed image of its noise. So, the bulky optical filter system is required. We propose novel pixel design for a complex light modulation that can overcome these limitations. This design is based on the principle of the complex value of each pixel by dividing it into three fixed phases and controllable amplitudes. It is implemented to combination of rotated rods and is modulated to a cross polarized component for an incident wave. It has a concept that each amplitude can be controlled by width or length of each rod. In this research, we present the characteristics of the complex spatial light modulation for the proposed metasurface structure by Fourier modal method (FMM) simulation based on the rigorous coupled wave analysis (RCWA) and verify that the proposed design can control the complex light modulation on the higher-order diffraction component. Also, noise-free hologram is verified by the results of reconstructed diffraction patterns using wave optical based simulations to analyze the distribution of complex modulated waves in free space.
This Conference Presentation, Design of wide-viewing angle, full-color, high-definition, computer-generated holograms with off-axis illumination was recorded at SPIE Photonics West 2022 held in San Francisco, California, United States.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.