The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results
for the entire suite of VPH gratings.
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of a baseline build of 150 identical
spectrographs (arrayed as 75 units, each with a pair of spectrographs) fed by 33,600 fibers, each 1.5 arcsec diameter,
deployed over the 22 arcminute field of the upgraded 10 m Hobby-Eberly Telescope (HET). The goal is to deploy 96
units. VIRUS has a fixed bandpass of 350-550 nm and resolving power R~700. VIRUS is the first example of
industrial-scale replication applied to optical astronomy and is capable of spectral surveys of large areas of sky. The
method of industrial replication, in which a relatively simple, inexpensive, unit spectrograph is copied in large numbers,
offers significant savings of engineering effort, cost, and schedule when compared to traditional instruments.
The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy
Experiment (HETDEX+) using 0.8M Lyman-α emitting galaxies as tracers. The full VIRUS array is due to be deployed
in late 2011 and will provide a powerful new facility instrument for the HET, well suited to the survey niche of the
telescope. VIRUS and HET will open up wide field surveys of the emission-line universe for the first time. We present
the design, cost, and current status of VIRUS as it enters production, and review performance results from the VIRUS
prototype. We also present lessons learned from our experience designing for volume production and look forward to
the application of the VIRUS concept on future extremely large telescopes (ELTs).
We describe the design, construction, and performance of VIRUS-P (Visible Integral-field Replicable Unit
Spectrograph - Prototype), the prototype for 150+ identical fiber-fed integral field spectrographs for the Hobby-Eberly
Telescope Dark Energy Experiment (HETDEX). VIRUS-P was commissioned in 2007, is in regular service on the
McDonald Observatory 2.7 m Smith telescope, and offers the largest field of any integral field spectrograph. The 246-fiber IFU uses a densepak-type fiber bundle with a 1/3 fill factor. It is fed at f/3.65 through a telecentric, two-group
dioptric focal reducer. The spectrograph's double-Schmidt optical design uses a volume phase holographic grating at
the pupil between the articulating f/3.32 folded collimator and the f/1.33 cryogenic prime focus camera. High on-sky
throughput is achieved with this catadioptric system by the use of high reflectivity dielectric coatings, which set the
340-670 nm bandwidth. VIRUS-P is gimbal-mounted on the telescope to allow short fibers for high UV throughput,
while maintaining high mechanical stability. The instrument software and the 18 square arcmin field, fixed-offset guider
provide rapid acquisition, guiding, and precision dithering to fill in the IFU field. Custom software yields Poisson noise
limited, sky subtracted spectra. The design characteristics are described that achieved uniformly high image quality with
low scattered light and fiber-to-fiber cross talk. System throughput exceeds requirements and peaks at 40%. The
observing procedures are described, and example observations are given.
The Visible Integral-field Replicable Unit Spectrograph Prototype (VIRUS-P) has been in operation on the
Harlan J Smith 2.7m Telescope at McDonald Observatory since October of 2006. The prototype was created to
test the design and science capabilities of the full VIRUS instrument, wherein 150 copies of the spectrograph will
be installed on the Hobby Eberly Telescope (HET). We here discuss the specialized test bench built to assess
the blue optimized Volume Phase Holographic (VPH) grating performance. We also give lab and on-telescope
efficiency measurements for three such gratings in the wavelength range 3400-6800Å. Two sources of stray light
relevant to most spectrograph designs are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.