KEYWORDS: Arteries, Photoplethysmography, Blood pressure, Tissue optics, Signal attenuation, Monte Carlo methods, Instrument modeling, Geometrical optics, Finite element methods, Blood
Obesity is a significant risk factor for development and management of cardiovascular disease, one of the leading causes of death in the United States. Blood pressure (BP) is a key factor for monitoring cardiac health. In support of design and development of wearable health devices, we have developed a model to generate synthetic photoplethysmographic waveforms captured by a commercial device for the radial artery at the volar surface of the wrist. We focus on impacts to the PPG signal as a result of various changes attributed to obesity, epidermal melanin, and vascular layers.
Systolic and diastolic blood pressure values can be used as an indicator of an individual’s risk for cardiovascular disease. The common practice of blood pressure (BP) measurement using a cuff-based system provides a snapshot of blood pressure at a single instance in time and can be inconvenient and intrusive. The development of optical methods to determine blood pressure could provide continuous monitoring of blood pressure through techniques such as pulse transit time (PTT) or pulse arrival time (PAT) when used with echocardiogram. Cuff based BP devices are known to have variation and inaccuracies when applied to larger arm sizes as seen in individuals with obesity but little is known of the influence of obesity in the PPG/PTT and PAT signals. We propose that accurate waveform replication is required for the derivation of blood pressure applied to individuals with obesity. Here we use the Monte Carlo framework to develop the PPG waveform as a means to derive blood pressure through cuff less techniques. The development of a simulated waveform incorporates realistic changes in the artery related to its biomechanical properties as a pressure wave is propagated through the vessel. It is shown that a change in vessel pressure and geometry directly affects the captured optical signal. The system can account for variations in body-mass index to compensate for geometrical changes in adipose tissue layer and changes in optical properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.