The detection, location, and identification of suspected underground nuclear explosions (UNEs) are global security priorities that rely on integrated analysis of multiple data modalities for uncertainty reduction in event analysis. Vegetation disturbances may provide complementary signatures that can confirm or build on the observables produced by prompt sensing techniques such as seismic or radionuclide monitoring networks. For instance, the emergence of non-native species in an area may be indicative of anthropogenic activity or changes in vegetation health may reflect changes in the site conditions resulting from an underground explosion. Previously, we collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a legacy underground nuclear explosion test site and its surrounds. These data consist of visible and near-infrared wavebands over 4.3 km2 of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery. In this work, we employ various spectral detection and classification algorithms to identify and map vegetation species in an area of interest containing the legacy test site. We employed a frequentist framework for fusing multiple spectral detections across various reference spectra captured at different times and sampled from multiple locations. The spatial distribution of vegetation species is compared to the location of the underground nuclear explosion. We find a difference in species abundance within a 130 m radius of the center of the test site.
Optical remote sensing has become a valuable tool in many application spaces because it can be unobtrusive, search large areas efficiently, and is increasingly accessible through commercially available products and systems. In the application space of chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing, optical remote sensing can be an especially valuable tool because it enables data to be collected from a safe standoff distance. Data products and results from remote sensing collections can be combined with results from other methods to offer an integrated understanding of the nature of activities in an area of interest and may be used to inform in-situ verification techniques. This work will overview several independent research efforts focused on developing and leveraging spectral and polarimetric sensing techniques for CBRNE applications, including system development efforts, field deployment campaigns, and data exploitation and analysis results. While this body of work has primarily focused on the application spaces of chemical and underground nuclear explosion detection and characterization, the developed tools and techniques may have applicability to the broader CBRNE domain.
We report on the design, modeling, calibration, and experimental results of a LWIR, spectrally and temporally resolved broad band bi-directional reflectance distribution function measuring device. The system is built using a commercial Fourier transform infrared spectrometer, which presents challenges due to relatively low power output compared to laser based methods. The instrument is designed with a sample area that is oriented normal to gravity, making the device suitable for measuring loose powder materials, liquids, or other samples that can be difficult to measure in a vertical orientation. The team built a radiometric model designed to understand the trade space available for various design choices as well as to predict instrument success at measuring the target materials. The radiometric model was built by using the output of commercial non sequential raytracing tools combined with a scripted simulation of the interferometer. The trade space identified in this analysis will be presented.
The design was based on moving periscopes with custom off axis parabolas to focus the light onto the sample. The system assembly and alignment will be discussed. The calibration method used for the sensor will be detailed, and preliminary measurements from this research sensor will be presented.
Hyperspectral and multispectral imagers have been developed and deployed on satellite and manned aerial platforms for decades and have been used to produce spectrally resolved reflectance and other radiometric products. Similarly, light detection and ranging, or LIDAR, systems are regularly deployed from manned aerial platforms to produce a variety of products, including digital elevation models. While both types of systems have demonstrated impressive capabilities from these conventional platforms, for some applications it is desirable to have higher spatial resolution and more deployment flexibility than satellite or manned aerial platforms can offer. Commercially available unmanned aerial systems, or UAS, have recently emerged as an alternative platform for deploying optical imaging and detection systems, including spectral imagers and high resolution cameras. By enabling deployments in rugged terrain, collections at low altitudes, and flight durations of several hours, UAS offer the opportunity to obtain high spatial resolution products over multiple square kilometers in remote locations. Taking advantage of this emerging capability, our team recently deployed a commercial UAS to collect hyperspectral imagery, RGB imagery, and photogrammetry products at a legacy underground nuclear explosion test site and its surrounds. Ground based point spectrometer data collected over the same area serves as ground truth for the airborne results. The collected data is being used to map the site and evaluate the utility of optical remote sensing techniques for measuring signatures of interest, such as the mineralogy, anthropogenic objects, and vegetative health. This work will overview our test campaign, our results to date, and our plans for future work.
Hyperspectral imaging polarimetry enables both the spectrum and its spectrally resolved state of polarization to be measured. This information is important for identifying material properties for various applications in remote sensing and agricultural monitoring. We describe the design and performance of a ruggedized, field deployable hyperspectral imaging polarimeter, designed for wavelengths spanning the visible to near-infrared (450 to 800 nm). An entrance slit was used to sample the scene in a pushbroom scanning mode across a 30 deg vertical by 110 deg horizontal field-of-view. Furthermore, athermalized achromatic retarders were implemented in a channel spectrum generator to measure the linear Stokes parameters. The mechanical and optical layout of the system and its peripherals, in addition to the results of the sensor’s spectral and polarimetric calibration, are provided. Finally, field measurements are also provided and an error analysis is conducted. With its present calibration, the sensor has an absolute polarimetric error of 2.5% RMS and a relative spectral error of 2.3% RMS.
Channeled linear imaging polarimeters measure the two-dimensional distribution of the linear Stokes parameters. A key aspect of this technique is to accurately reconstruct the Stokes parameters from a snapshot, modulated measurement of the channeled linear imaging polarimeter. The state-of-the-art reconstruction takes the Fourier transform of the measurement to separate the Stokes parameters into channels. While straightforward, this approach is sensitive to channel cross-talk and imposes bandwidth limitations that cut off high frequency details. To overcome these drawbacks, we present a reconstruction method called compressed channeled linear imaging polarimetry. In this framework, reconstruction in channeled linear imaging polarimetry is an underdetermined problem, where we measure N pixels and recover 3N Stokes parameters. We formulate an optimization problem by creating a mathematical model of the channeled linear imaging polarimeter with inspiration from compressed sensing. Through simulations, we show that our approach mitigates artifacts seen in Fourier reconstruction, including image blurring and degradation and ringing artifacts caused by windowing and channel cross-talk. By demonstrating more accurate reconstructions, we push performance to the native resolution of the sensor, allowing more information to be recovered from a single measurement of a channeled linear imaging polarimeter.
This paper describes measurements being made on a series of material systems for the purpose of developing a radiative-transfer model that describes the reflectance of light by granular solids. It is well recognized that the reflectance spectra of granular materials depend on their intrinsic (n(λ) and k(λ)) and extrinsic (morphological) properties. There is, however, a lack of robust and proven models to relate spectra to these parameters. The described work is being conducted in parallel with a modeling effort1 to address this need. Each follows a common developmental spiral in which material properties are varied and the ability of the model to calculate the effects of the changes are tested. The parameters being varied include particle size/shape, packing density, material birefringence, optical thickness, and spectral contribution of a substrate. It is expected that the outcome of this work will be useful in interpreting reflectance data for hyperspectral imaging (HSI), and for a variety of other areas that rely on it.
Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.
Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.
KEYWORDS: Polarization, Polarimetry, Signal to noise ratio, Prototyping, Sensors, Chemical analysis, Humidity, Chemical detection, Coating, Titanium dioxide
We report on the development of a prototype polarization tag based system for detecting chemical vapors. The system primarily consists of two components, a chemically sensitive tag that experiences a change in its optical polarization properties when exposed to a specific chemical of interest, and an optical imaging polarimeter that is used to measure the polarization properties of the tags. Although the system concept could be extended to other chemicals, for the initial system prototype presented here the tags were developed to be sensitive to hydrogen fluoride (HF) vapors. HF is used in many industrial processes but is highly toxic and thus monitoring for its presence and concentration is often of interest for personnel and environmental safety. The tags are periodic multilayer structures that are produced using standard photolithographic processes. The polarimetric imager has been designed to measure the degree of linear polarization reflected from the tags in the short wave infrared. By monitoring the change in the reflected polarization signature from the tags, the polarimeter can be used to determine if the tag was exposed to HF gas. In this paper, a review of the system development effort and preliminary test results are presented and discussed, as well as our plan for future work.
Phase error is common in reflective interferometers, such as the Michelson. This yields highly asymmetric interferograms that complicate the post-processing of single-sided interference data. Common methods of compensating for phase errors include the Mertz, Forman, and Cannes phase correction techniques. However, birefringent interferometers often have highly symmetric interferograms; thus, compensating for phase errors may represent an unnecessary and/or detrimental step in post processing. In this paper, an analysis of the phase error generated by the Infrared Hyperspectral Imaging Polarimeter (IHIP) is conducted. First, a model of the IHIP is presented that quantifies the phase error in the system. The error associated with calculating spectra from single-sided interferograms, using Mertz phase correction and simple singlesided to double-sided mirroring, is then investigated and compared to "true" double-sided Cannes phase corrected spectra. These error calculations are set within the context of measurements taken from a Michelson interferometer-based Fourier transform spectrometer. Results demonstrate that the phase error of the IHIP is comparatively small and that Mertz phase correction may not be necessary to minimize error in the spectral calculation.
We report the main conclusions from an interactive, multidisciplinary workshop on “Polarimetric Techniques and Technology”, held on March 24-28 2014 at the Lorentz Center in Leiden, the Netherlands. The work- shop brought together polarimetrists from different research fields. Participants had backgrounds ranging from academia to industrial RD. Here we provide an overview of polarimetric instrumentation in the optical regime geared towards a wide range of applications: atmospheric remote sensing, target detection, astronomy, biomedical applications, etc. We identify common approaches and challenges. We list novel polarimetric techniques and polarization technologies that enable promising new solutions. We conclude with recommendations to the polarimetric community at large on joint efforts for exchanging expertise.
Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. Past work has addressed this issue by developing athermalized retarders using two or more uniaxial crystals. Recently, a retarder made of biaxial KTP and cut at a thermally insensitive angle was used to produce an athermal channeled spectropolarimeter. This paper presents the results of the biaxial crystal system and compares the two thermal stabilization techniques in the context of producing an imaging thermally stable channeled spectropolarimeter. A preliminary design for a snapshot imaging channeled spectropolarimeter is also presented.
Conductive polymers with high solids loading (> 40wt.%) are challenging to pattern to single micron feature sizes and require unique techniques or templates to mold the material. The development of a conductive polymer optical tag is discussed for identifying the presence of hydrofluoric acid (HF) and leverages free standing silicon fins as a template utilizing deep reactive ion etching (DRIE) techniques will be discussed. This work is aimed towards a future flexible conductive polymer tag to be transferred via adhesive or epoxy for a novel sensor surface. The advantage to this technique over wafer thinning is a higher throughput of device manufacture without damage to the silicon fins or polymer due to chemical-mechanical interactions or added protective layers. The gratings consist of a high spatial frequency (1.15 μm pitch) grating consisting of lines of conductive polymer and lines of silicon which are free standing. A novel running bond pattern aims to minimize the intrinsic stress and allows the conductive polymer to infiltrate without distorting the template. The polymer conductivity mechanism has been designed to break down under a chemical binding to fluorine; changing its conductivity upon exposure, and results in a change in the polarization response. The use of the polarization response makes the signal more robust to intensity fluctuations in the background or interrogation system. Additionally, the use of optical interrogation allows for standoff detection in instances where hazardous conditions may be present. Examples of material and device responses will be shown and directions for further investigation are discussed.
A computed tomographic imaging spectrometer (CTIS) disperses the three-dimensional (3-D) datacube (x, y, λ) into two-dimensional (2-D) projections on a focal plane array (FPA). The 3-D datacube is subsequently reconstructed from these 2-D projections using iterative computed tomography algorithms. Conventional designs achieve the 3-D to 2-D mapping by incorporating an optimized disperser. However, these dispersers suffer from the linearity constraint inherent in the first-order grating equation. This constraint means that many of the FPA's pixels are either unilluminated or they are used to image redundant projections; in both cases, they can not be used to increase the datacube's spectral resolution. Here, we outline various hardware improvements that increase the CTIS's spectral resolution by making use of these previously unilluminated or redundant pixels. Specifically, we incorporated a new disperser based on a 2-D grating prism and a division of aperture approach. Included is an optical design analysis of the system, in addition to an experimental characterization of the instrument's performance. Lastly, the new disperser is compared to a conventional disperser to quantify the increased spectral resolution.
A Fourier transform spectrometer (FTS) acquires interferogram data for spectral measurements. Conventional FTS instruments incorporate Michelson interferometers. However, limitations of the Michelson for imaging applications have produced interest in alternative interferometer configurations. Common path interferometers, such as birefringent interferometers, offer advantages for remote sensing applications. To ensure the best possible signal-to-noise ratio, the fringe contrast provided by the interferometer should be maximized. Unfortunately some birefringent interferometers, such as those that utilize Wollaston prisms (WPs), require stringent tolerances in order to ensure high fringe contrast across even a modest field of view (FOV). Fabricating an interferometer to meet these tolerances adds fabrication cost and time to the development of an instrument. We present how the introduction of additional birefringent elements into birefringent interferometer can be used to compensate for a decrease in fringe visibility due to manufacturing errors. These components form a variable angle WP (VWP), which can be used to vary the fringe visibility across the FOV. Experimental results confirming the ability of the VWP to vary the fringe visibility of a birefringent interferometer are included. These results are compared to polarization raytrace simulations for the system.
We present results from a SWIR/MWIR infrared hyperspectral imaging polarimeter (IHIP). The sensor includes a
pair of sapphire Wollaston prisms and several high order retarders to form an imaging Fourier transform
spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration
versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of
channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. We discuss the
operation of the IHIP sensor, in addition to our calibration techniques. Lastly, spectropolarimetric results from the
laboratory and outdoor tests are presented.
A compact SWIR/MWIR infrared hyperspectral imaging polarimeter (IHIP) is currently under development at the
Optical Detection Lab at the University of Arizona. The sensor uses a pair of sapphire Wollaston prisms and high
order retarders to form an imaging birefringent Fourier transform spectropolarimeter. Polarimetric data are acquired
through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information.
The two dimensional interferogram is Fourier filtered and reconstructed to recover the complete Stokes vector data
across the image. The IHIP operates over a +/-5° field of view and will use a dual-scan false signature reduction
technique to suppress polarimetric aliasing artifacts. We present current instrument development progress, initial
laboratory results, and our plan for future work.
Channeled spectropolarimetry measures the complete polarization state of light, using a single spectrum, by amplitude modulating the Stokes parameters onto spectral carrier frequencies. However, spectral features that are not band limited in the Fourier transform domain, such as narrow-band atomic absorption lines, can generate false polarimetric signatures. We present a false-signature (aliasing) reduction technique that reduces the error induced by these non-band-limited features. Additionally, the spectral resolution of the S0 Stokes parameter is improved, up to the maximum resolution offered by the spectrometer. A theoretical model for implementing the technique on a Fourier transform infrared spectrometer is presented, including an enhanced model that accounts for dichroism within the crystal. The approach is experimentally demonstrated in the middle-wavelength infrared (3-5 µm) with the use of two multiple-order yttrium vanadate retarders. Additional results demonstrating the technique for wavelengths spanning 2.5-15 µm are obtained using cadmium sulfide retarders. Reconstructions are compared to conventional channeled spectropolarimetric reconstructions from the same system.
Channeled spectropolarimetry, first developed by K. Oka, is capable of measuring all the Stokes parameters from a
single modulated spectrum. We present a theoretical means for improving the spectral resolution of channeled
spectropolarimetry by at least a factor of four. Especially valuable in the infrared due to atmospheric absorption features,
this method simultaneously provides for the correction of aliasing artifacts from the channels used for the determination
of the Stokes parameters. The technique is experimentally demonstrated using a Fourier transform infrared spectrometer
and two multiple-order Yttrium Vanadate (YVO4) retarders. This approach is implemented with consideration of crystal
dichroism effects, and reconstructions are compared with conventional channeled spectropolarimetric reconstructions
from the same system. Additional results, produced by using Cadmium Sulfide (CdS) retarders, provide demonstration
of the technique across the infrared.
A computed tomographic imaging spectrometer (CTIS) is an instrument which can simultaneously obtain image spatial
and spectral information without moving parts in a single focal plane array integration time. When this instrument is
combined with a channeled spectropolarimeter, the instrument can also obtain complete Stokes polarization information
at each resolution element. The combined instrument, called a computed tomographic imaging channeled
spectropolarimeter (CTICS), has been developed in the visible wavelength region. This paper summarizes the CTICS
design and results obtained from data acquired during field testing of the CTICS instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.