We implement an InGaAs/InP single-photon avalanche diode (SPAD) for single-photon detection with the fastest
gating frequency reported so far, of 2.23GHz, which approaches the limit given by the bandwidth of the SPAD
- 2.5 GHz. We propose a useful way to characterize the afterpulsing distribution for rapid gating that allows for
easy comparison with conventional gating regimes. We compare the performance of this rapid gating scheme with
free-running detector and superconducting single-photon detector (SSPD) for the coherent one-way quantum key
distribution (QKD) protocol. The rapid gating system is well suited for both high-rate and long-distance QKD
applications, in which Mbps key rates can be achieved for distances less than 40km with 50 ns deadtime and the
maximum distance is limited to ~190km with 5 μs deadtime. These results illustrate that the afterpulsing is no
longer a limiting factor for QKD.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.