This study explores reverberant shear wave elastography to create accurate magnetic resonance elastograms. The reverberant elastography technique utilizes the complex wave field originating from multiple point sources or reflected from various angles and superimposed with each other. The study was conducted on a calibrated brain phantom. Results showed that reverberant elastography produced accurate elastograms with an accuracy range of 84-97% and contrast-to-noise ratios of 24 dB, compared to an accuracy range of 86-97.7% and contrast-to-noise ratios of 25 dB for the established subzone inversion method.
The reverberant shear wave (RSW) technique offers a promising framework for elastography. In this study, to characterize fibrotic fatty livers at different fibrotic stages, we employed an autocorrelation (AC) estimator within the RSW framework to evaluate shear wave speed (SWS) of viscoelastic media. To this end, we utilized both simulation and experimental approaches and excited the RSW field in a medium within each approach at the frequency of 150 Hz: (i) the finite element (FE) simulation of a RSW field in a 3D model of a whole organ fatty liver and (ii) the RSW experiments on two castoroil- in-gelatin phantoms fabricated in the lab. In the FE simulations, to represent a more realistic liver model, a thin adipose fat layer and a muscle layer were added as viscoelastic power-law materials on top of the liver model. The SWS estimation from the RSW simulation was compared with predictions from the theory of composite media for verification. For the RSW experiments on phantoms, the SWS estimations were compared with the SWS results obtained from performing the stress relaxation test as an independent modality. The simulation results showed that the RSW-based AC estimator provides good estimates of SWS, within >90% accuracy compared with theory. Also, the RSW estimator results from the phantom experiments at different background stiffness levels provided some experimental support for the utility of the RSW estimator. These results demonstrated that the AC estimator is sensitive to the changes in viscoelastic properties of viscoelastic media.
In the H-scan analysis and display, visualization of different scattering sizes and types is enabled by a matched filter approach involving different orders of Gaussian weighted Hermite functions. An important question with respect to clinical applications involves the change in H-scan outputs with respect to small changes in scatterer sizes. The sensitivity of H-scan outputs is analyzed using the theory of backscatter from a compressible sphere. Experimental corroboration is established using mono dispersed spherical scatterers in phantoms. With a 6-MHz center frequency broadband transducer, it is possible to visualize changes in scattering size in the order of 10 to 15 μm in phantoms and also changes in ex vivo bovine liver tissue due to edema caused by hypotonic perfusion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.