PurposeDigital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast. To combine the advantages of DBT with the faster acquisition and the unique in-plane resolution capabilities known from FFDM, a system concept was developed for application in screening and diagnosis.ApproachThe concept comprises an X-ray tube with adaptive focal spot position based on the flying focal spot (FFS) technology and optimized X-ray spectra. This is combined with innovative algorithmic concepts for tomosynthesis reconstruction and synthetic mammograms (SMs).ResultsAn X-ray tube with FFS was incorporated into a DBT system that performs 50-deg wide tomosynthesis scans with 25 projections in 4.85 s. Laboratory evaluations demonstrated significant improvements in the effective modular transfer function (eMTF). The improved eMTF as well as the effectiveness of the algorithmic concepts is shown in images from a clinical evaluation study.ConclusionsThe DBT system concept enables high spatial resolution at short acquisition times. This leads to improved microcalcification visibility, reduced risk of motion artifacts, and shorter breast compression times. It shifts the in-plane resolution of DBT into the high-resolution range of FFDM. The presented technology leap might be a key contributor to facilitating the paradigm shift of replacing FFDM with DBT plus SM.
KEYWORDS: Digital breast tomosynthesis, Mammography, Breast, X-rays, Modulation transfer functions, Imaging systems, Tomosynthesis, Spatial resolution, Breast cancer
Digital breast tomosynthesis (DBT) enables significantly higher cancer detection rates compared to full-field digital mammography (FFDM) without compromising the recall rate. However, regarding microcalcification assessment established tomosynthesis system concepts still tend to be inferior to FFDM. To further boost the clinical role of DBT in breast cancer screening and diagnosis, a system concept was developed that enables fast wide-angle DBT with the unique in-plane resolution capabilities known from FFDM. The concept comprises a novel x-ray tube concept that incorporates an adaptive focal spot position, fast flat-panel detector technology, and innovative algorithmic concepts for image reconstruction. We have built a DBT system that provides tomosynthesis image stacks and synthetic mammograms from 50° tomosynthesis scans realized in less than five seconds. In this contribution, we motivate the design of the system concept, present a physics characterization of its imaging performance, and outline the algorithmic concepts used for image processing. We conclude with illustrating the potential clinical impact by means of clinical case examples from first evaluations in Europe.
Talbot-Lau X-ray imaging (TLXI) provides information about scattering and refractive features of objects – in addition to the well-known conventional X-ray attenuation image. We investigated the potential of TLXI for the detection of hairline fractures in bones, which are often initially occult in conventional 2D X-ray images. For this purpose, hairline fractures were extrinsically provoked in a porcine trotter (post-mortem) and scanned with a TLXI system. In the examined case, hairline fractures caused dark-field and differential-phase signals, whereas they were not evident in the conventional X-ray image. These findings motivate a comprehensive and systematic investigation of the applicability of TLXI for diagnosing hairline fractures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.