Modern Unattended Ground Sensor (UGS) systems require transmission of high quality imagery to a remote location while meeting severe operational constraints such as extended mission life using battery operation. This paper describes a robust imagery system that provides excellent performance for both long range and short range stand-off scenarios. The imaging devices include a joint EO and IR solution that features low power consumption, quick turn-on time, high resolution images, advanced AGC and exposure control algorithms, digital zoom, and compact packaging. Intelligent camera operation is provided by the System Controller, which allows fusion of multiple sensor inputs and intelligent target recognition. The System Controller's communications package is interoperable with all SEIWG-005 compliant sensors. Image transmission is provided via VHF, UHF, or SATCOM links. The system has undergone testing at Yuma Proving Ground and Ft. Huachuca, as well as extensive company testing. Results from these field tests are given.
Demands for miniaturized networked sensors that can be deployed in large quantities dictate that the packages be small and cost effective. In order to accomplish these objectives, system developers generally apply advanced packaging techniques to proven systems. A partnership of Nova Engineering and Tessera begins with a baseline of Nova's Unattended Ground Sensors (UGS) technology and utilizes Tessera's three-dimensional (3D) Chip-Scale Packaging (CSP), Multi-Chip Packaging (MCP), and System-in-Package (SIP) innovations to enable novel methods for fabricating compact, vertically integrated sensors utilizing digital, RF, and micro-electromechanical systems (MEMS) devices. These technologies, applied to a variety of sensors and integrated radio architectures, enable diverse multi-modal sensing networks with wireless communication capabilities. Sensors including imaging, accelerometers, acoustical, inertial measurement units, and gas and pressure sensors can be utilized. The greatest challenge to high density, multi-modal sensor networks is the ability to test each component prior to integration, commonly called Known Good Die (KGD) testing. In addition, the mix of multi-sourcing and high technology magnifies the challenge of testing at the die level. Utilizing Tessera proprietary CSP, MCP, and SIP interconnection methods enables fully testable, low profile stacking to create multi-modal sensor radios with high yield.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.