The combination of sample translation and line focusing by cylindrical optics is shown to be a convenient and highly
effective way of generating laser induced coherent periodic surface structures (LIPSS) in TiO2 over significantly
extended areas. Compared to known techniques based on a sample translation relative to a circular symmetric focus, the
approach is much less time consuming and requires only a single translation stage. The capability of the method to form
both high and low spatial frequency LIPSS (HSFL, LSFL) at the second harmonic wavelengths of a Ti:sapphire-laser
(around 400 nm) at properly chosen scanning velocity and laser pulse energies is demonstrated. Structured multi-mm2
areas with periods of 80 nm and 325 nm were obtained corresponding to distinct sets of optimized parameters.
Furthermore, the appearance of nano-bumps on 30 nm scale on the surface of the LSFL is reported. Basic technical
issues are discussed and potential applications of LIPSS in rutile-type TiO2 like superwetting, friction control, catalysis
and photovoltaic are proposed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.