Two-photon photoacoustic microscopy (TP-PAM) can visualize deep structures in living tissues with high spatial resolution determined by the volume of nonlinear absorption. Generally, the out-of-focus background fluorescence limits the imaging depth in nonlinear optical microscopies. In this study, to overcome this drawback that is also expected to exist in TP-PAM, we propose TP-PAM with spatial overlap modulation using femtosecond optical pulse train. Because the modulation depth of the spatial overlap in the focal region is much greater than those in out-of-focus regions, the out-of-focus background is effectively rejected by extracting the modulated photoacoustic signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.