Aseptic cell sorting is important for cell culture and downstream analyses of sorted cells. However, keeping the sort aseptic is challenging as the sheath fluid in a cell sorter may easily be contaminated with germs such as bacteria, yeasts, viruses, or fungi. Thus, a regular chemical cleaning of the whole fluidics system is required. However, this procedure is time consuming, and its success can hardly be verified. Here, we present a method for sheath fluid decontaminated by irradiation with UV-C light using a flow-through principle. With this principle, a 5 log10 reduction of bacteria in the sheath fluid was achieved.
Phase-locked electromagnetic transients in the terahertz (THz) spectral domain have become a unique contact-free probe
of the femtosecond dynamics of low-energy excitations in semiconductors. Access to their nonlinear response, however,
has been limited by a shortage of sufficiently intense THz emitters. Here we introduce a novel high-field source for THz
transients featuring peak amplitudes of up to 108 MV/cm. This facility allows us to explore the non-perturbative
response of semiconductors to intense fields tailored with sub-cycle precision. In a first experiment intense transients
drive Rabi-oscillations between excitonic states in Cu2O, implying exciting perspectives for future THz quantum optics.
At electric fields beyond 10 MV/cm, we observe the breakdown of the power expansion of the nonlinear polarization in
bulk semiconductors. Furthermore, we employ the intense magnetic field components of our transients to coherently
control spin waves in antiferromagnetically ordered solids. Finally, intersubband cavity polaritons in semiconductor
microcavities are exploited to push light-matter coupling to an unprecedented ultrastrong and sub-cycle regime.
The optical properties of single-wall carbon nanotube sheets in the far-infrared (FIR) spectral range from few THz to several tens of THz have been investigated with terahertz spectroscopy both with static measurements elucidating the absorption mechanism in the FIR and with time-resolved experiments yielding information on
the charge carrier dynamics after optical excitation of the nanotubes. We observe an overall depletion of the
dominating broad absorption peak at around 4THz when the nanotubes are excited by a short visible laser pulse.
This finding excludes particle-plasmon resonances as absorption mechanism and instead shows that interband transitions in tubes with an energy gap of ~10meV govern the far-infrared conductivity. A simple model based on an ensemble of two-level systems naturally explains the weak temperature dependence of the far-infrared conductivity by the tube-to-tube variation of the chemical potential. Furthermore, the time-resolved measurements do not show any evidence of a distinct free-carrier response which is attributed to the photogeneration of strongly bound excitons in the tubes with large energy gaps. The rapid decay of a featureless background with pronounced dichroism is associated with the increased absorption of spatially localized charge carriers before thermalization is completed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.