We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays that deliver both a high
light-extraction efficiency and wide viewing-angle characteristics. A single pair of low- and high-index layers is
inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red,
green, and blue weak-microcavity OLEDs (WMOLEDs) are enhanced by 56%, 107%, and 26%, respectively with
minimal changes viewing angle and EL spectra characteristics. The color purity is also improved for all three colors.
Moreover, we fabricated full-color 128×160 passive-matrix bottom-emitting WMOLED displays to prove their
manufacturability. This design is realized by simple one-step 20-nm etching of the low-index layer of red/green subpixels.
The EL efficiency of white color in the WMOLED display is 27% higher than that of a conventional OLED
display.
We have designed channel-drop filters with two line defects and a resonance system based on the two-dimensional triangular-lattice-hole photonic-crystal structure by two-dimensional and three-dimensional finite-difference time-domain simulations. The quality factors have been calculated to be around 3,500 of a two-dimensional channel-drop filter and to be around 300 of a resonance system based on the triangular-lattice hole-based photonic-crystal slab structure.
We have developed an finite-difference time-domain program that can analyze photonic devices with gain and/or dispersion. As an example, a two-dimensional photonic-crystal laser is simulated. The simulation can show the relaxation oscillation behavior at extremely high current injection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.