Yttrium orthoaluminate (YAlO3) is an attractive laser host crystal for doping with thulium (Tm3+) ions. We report on the absorption and stimulated-emission (SE) cross-sections of this orthorhombic (sp. gr. Pnma) Tm:YAlO3 crystal for the principal light polarizations, E || a, b and c. Polarized absorption data lead to the Judd-Ofelt parameters Ω2 = 1.46, Ω4 = 2.82 and Ω6 = 1.09 [10-20 cm2]. In particular, for the 3H4 → 3H5 transition, it is found a stimulated emission cross section of 0.86×10-20 cm2 at 2278 nm corresponding to an emission bandwidth of ~12 nm (for E || b). Continuous-wave laser operation on this 3H4 → 3H5 transition is achieved with an 1.8 at.% Tm:YAlO3 crystal under laser-pumping at 776 nm. The mid-infrared Tm:YAlO3 laser generated 0.96 W at ~2274 nm with a slope efficiency of 61.8% and a linear laser polarization (E || b). Tm:YAlO3 is promising for mode-locked lasers at ~2.3 μm.
We systematically study cross-relaxation (CR) and ion clustering in Tm3+:CaF2 crystals using a spectroscopic approach. For this, the luminescence from the 3H4 and 3F4 states was monitored for a broad range of Tm3+ doping concentrations, from 0.01 at.% to 7 at.%. The decay curves were fitted using a model of two ions classes, namely isolated ions showing no energy-transfer processes and ions with neighbors exhibiting both CR and energy-transfer upconversion (ETU), and accounting for energy-migration. The fraction of ions with neighbors and the microscopic concentration-independent CR and ETU parameters are deduced. The critical Tm3+ doping level for which at least half of the active ions are clustered is only 0.7 at.%. The obtained results are relevant for achieving efficient laser operation of Tm3+:CaF2 crystals at the 3F4 → 3H6 (at ~1.9 μm) and the 3H4 → 3H5 (at ~2.3 μm) transitions.
We report on a novel approach to fabricate channel (ridge) waveguides (WGs) in bulk crystals using precision diamond saw dicing. The channels feature a high depth-to-width aspect ratio (deep dicing). The proof-of-the-concept is shown for a Tm:LiYF4 fluoride crystal. Channels with a depth of 200 μm and widths of 10–50 μm are diced and characterized with a confocal laser microscopy revealing a r.m.s. roughness of the walls of about 1 μm. The passive waveguiding properties of the channels are proven at ~815 nm showing almost no leakage of the guided mode into the bulk crystal volume. The laser operation is achieved in quasi-CW regime. The maximum peak output power reaches 0.68 W at ~1.91 μm with a slope efficiency of 53.3% (in σ-polarization). The laser mode has a vertical stripe intensity profile. The proposed concept is applicable to a variety of laser crystals with different rare-earth dopants and it is promising for sensing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.