As the importance of Computer Aided Detection (CAD) systems application is rising in medical imaging field due to the advantages they generate; it is essential to know their weaknesses and try to find a proper solution for them. A common possible practical problem that affects CAD systems performance is: dissimilar training and testing datasets declines the efficiency of CAD systems. In this paper normalizing images is proposed, three different normalization methods are applied on chest radiographs namely (1) Simple normalization (2) Local Normalization (3) Multi Band Local Normalization. The supervised lung segmentation CAD system performance is evaluated on normalized chest radiographs with these three different normalization methods in terms of Jaccard index. As a conclusion the normalization enhances the performance of CAD system and among these three normalization methods Local Normalization and Multi band Local normalization improve performance of CAD system more significantly than the simple normalization.
Computer aided detection (CAD) of tuberculosis (TB) on chest radiographs (CXR) is difficult because the disease has varied manifestations, like opacification, hilar elevation, and pleural effusions. We have developed a CAD research prototype for TB (CAD4TB v1.08, Diagnostic Image Analysis Group, Nijmegen, The Netherlands) which is trained to detect textural abnormalities inside unobscured lung fields. If the only abnormality visible on a CXR would be a blunt costophrenic angle, caused by pleural fluid in the costophrenic recess, this is likely to be missed by texture analysis in the lung fields. The goal of this work is therefore to detect the presence of blunt costophrenic (CP) angles caused by pleural effusion on chest radiographs. The CP angle is the angle formed by the hemidiaphragm and the chest wall. We define the intersection point of both as the CP angle point. We first detect the CP angle point automatically from a lung field segmentation by finding the foreground pixel of each lung with maximum y location. Patches are extracted around the CP angle point and boundary tracing is performed to detect 10 consecutive pixels along the hemidiaphragm and the chest wall and derive the CP angle from these. We evaluate the method on a data set of 250 normal CXRs, 200 CXRs with only one or two blunt CP angles and 200 CXRs with one or two blunt CP angles but also other abnormalities. For these three groups, the CP angle location and angle measurements were accurate in 91%, 88%, and 92% of all the cases, respectively. The average CP angles for the three groups are indeed different with 71.6° ± 22.9, 87.5° ± 25.7, and 87.7° ± 25.3, respectively.
Computer aided detection (CAD) of tuberculosis (TB) on chest radiographs (CXR) is challenging due to over-lapping structures. Suppression of normal structures can reduce overprojection effects and can enhance the appearance of diffuse parenchymal abnormalities. In this work, we compare two CAD systems to detect textural abnormalities in chest radiographs of TB suspects. One CAD system was trained and tested on the original CXR and the other CAD system was trained and tested on bone suppression images (BSI). BSI were created using a commercially available software (ClearRead 2.4, Riverain Medical). The CAD system is trained with 431 normal and 434 abnormal images with manually outlined abnormal regions. Subtlety rating (1-3) is assigned to each abnormal region, where 3 refers to obvious and 1 refers to subtle abnormalities. Performance is evaluated on normal and abnormal regions from an independent dataset of 900 images. These contain in total 454 normal and 1127 abnormal regions, which are divided into 3 subtlety categories containing 280, 527 and 320 abnormal regions, respectively. For normal regions, original/BSI CAD has an average abnormality score of 0.094±0.027/0.085±0.032 (p − 5.6×10−19). For abnormal regions, subtlety 1, 2, 3 categories have average abnormality scores for original/BSI of 0.155±0.073/0.156±0.089 (p = 0.73), 0.194±0.086/0.207±0.101 (p = 5.7×10−7), 0.225±0.119/0.247±0.117 (p = 4.4×10−7), respectively. Thus for normal regions, CAD scores slightly decrease when using BSI instead of the original images, and for abnormal regions, the scores increase slightly. We therefore conclude that the use of bone suppression results in slightly but significantly improved automated detection of textural abnormalities in chest radiographs.
The clinical use of computer-aided diagnosis (CAD) systems is increasing. A possible limitation of CAD systems is that they are typically trained on data from a small number of sources and as a result, they may not perform optimally on data from different sources. In particular for chest radiographs, it is known that acquisition settings, detector technology, proprietary post-processing and, in the case of analog images, digitization, can all influence the appearance and statistical properties of the image. In this work we investigate if a simple energy normalization procedure is sufficient to increase the robustness of CAD in chest radiography. We evaluate the performance of a supervised lung segmentation algorithm, trained with data from one type of machine, on twenty images each from five different sources. The results, expressed in terms of Jaccard index, increase from 0.530 ± 0.290 to 0.914 ± 0.041 when energy normalization is omitted or applied, respectively. We conclude that energy normalization is an effective way to make the performance of lung segmentation satisfactory on data from different sources.
Background. Contrary to what may be expected, finding abnormalities in complex images like pulmonary
nodules in chest radiographs is not dominated by time-consuming search strategies but by an almost immediate
global interpretation. This was already known in the nineteen-seventies from experiments with briefly flashed
chest radiographs. Later on, experiments with eye-trackers showed that abnormalities attracted the attention
quite fast but often without further reader actions. Prolonging one's search seldom leads to newly found abnormalities
and may even increase the chance of errors. The problem of reading chest radiographs is therefore
not dominated by finding the abnormalities, but by interpreting them. Hypothesis. This suggests that readers
could benefit from computer-aided detection (CAD) systems not so much by their ability to prompt potential
abnormalities, but more from their ability to 'interpret' the potential abnormalities. In this paper, this hypothesis
was investigated by an observer experiment. Experiment. In one condition, the traditional CAD condition,
the most suspicious CAD locations were shown to the subjects, without telling them the levels of suspiciousness
according to CAD. In the other condition, interactive CAD condition, levels of suspiciousness were given,
but only when readers requested them at specified locations. These two conditions focus on decreasing search
errors and decision errors, respectively. Results of reading without CAD were also recorded. Six subjects, all
non-radiologists, read 223 chest radiographs in both conditions. CAD results were obtained from the OnGuard
5.0 system developed by Riverain Medical (Miamisburg, Ohio). Results. The observer data were analyzed by
Location Response Operating Characteristic analysis (LROC). It was found that: 1) With the aid of CAD, the
performance is significantly better than without CAD; 2) The performance with interactive CAD is significantly
better than with traditional CAD at low false positive rates.
The computer aided diagnosis (CAD) of abnormalities on chest radiographs is difficult due to the presence of overlapping normal anatomy. Suppression of the normal anatomy is expected to improve performance of a CAD system, but such a method has not yet been applied to the computer detection of interstitial abnormalities such as occur in tuberculosis (TB). The aim of this research is to evaluate the effect of rib suppression on a CAD system for TB. Profiles of pixel intensities sampled perpendicular to segmented ribs were used to create a local PCA-based shape model of the rib. The model was normalized to the local background intensity and corrected for gradients perpendicular to the rib. Subsequently rib suppressed images were created by subtracting the models for each rib from the original image. The effect of rib suppression was evaluated using a CAD system for TB detection. Small square image patches were sampled randomly from 15 normal and 35 TB-affected images containing textural abnormalities. Abnormalities were outlined by a radiologist and were given a subtlety rating from 1 to 5. Features based on moments of intensity distributions of Gaussian derivative filtered images were extracted. A supervised learning approach was used to discriminate between normal and diseased image patches. The use of rib suppressed images increased the overall performance of the system, as measured by the area under the receiver operator characteristic (ROC) curve, from 0.75 to 0.78. For the more subtly rated patches (rated 1-3) the performance increased from 0.62 to 0.70.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.