Due to the limitation of high sampling rate and large coding matrix, it often takes a long time to decode and reconstruct millimeter-wave radiometric images, which becomes a difficult problem for Compressed Sensing (CS) theory in the field of millimeter-wave radiometric imaging. In order to effectively reconstruct millimeter-wave images within the framework of block-based CS, the adaptive sampling methods based on visual saliency and block information weight are proposed in this paper. In view of the irrationality of allocating the same amount of encoded data to different image blocks in the traditional block-based CS, both the adaptive sampling method based on visual saliency and local variance weighted adaptive allocation, and the adaptive sampling method based on visual saliency and two-dimensional information entropy weighted adaptive allocation, are put forward and compared with other allocation methods. Some experimental results demonstrate that the proposed method can effectively improve the PSNR value of the reconstructed image. In addition, the reconstructed images with a low sampling rate are also in conformity with human vision.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.